
Running BaBar Applications with a Web-Services Based Grid

by

Tristan Sullivan

University of Victoria

3800 Finnerty Road

Victoria, BC

Physics & Astronomy Co-op Work Term Report

in partial fulfillment

of the requirements of the Physics & Astronomy Co-op Program

Spring 2007

Tristan Sullivan

Department of Physics and Astronomy

University of Victoria

Abstract

 In order to help analyze the data produced by the BaBar experiment[1] being

conducted at the Stanford Linear Accelerator Centre, the University of Victoria’s grid

computing group had set up a computational grid using the Globus Toolkit [2]. Since

then, a significantly revised version of the Globus Toolkit has been released, and it was

desired that the UVic clusters be upgraded to use this newer version. This report includes

an overview of the grid, a description of the Globus Toolkit and some of the other

software used, some of the details of the upgrading process, and a description of the work

required to actually use the upgraded cluster to run BaBar applications.

Contents

1. Introduction 4

1.1 The Grid 4

1.2 The Globus Toolkit 5

1.3 Condor 5

1.4 The Portable Batch System 5

1.5 The BaBar Experiment 5

2. Upgrading From GT2 to GT4 6

3. Running BaBar Applications 10

4. Conclusion 12

5. Acknowledgements 13

6. References 14

List of Figures

1. Cluster Setup 8

2. Comparison of Transfer Times 10

3. Future Grid Setup 13

1. Introduction:

1.1 The Grid

High-energy physics experiments, and many scientific experiments in general,

generate far too much data to be expeditiously analyzed by hand, by a single computer, or

even by a single cluster of computers. So, to solve this problem, a number of clusters can

be unified into a single computational grid. An obvious issue with this setup is that of

scheduling; when a user submits a job to a single cluster, the head node of that cluster

decides, based on the job’s requirements, to which worker node that job should go. In

order to make the grid as analogous as possible, an operation called metascheduling is

performed. One machine is designated as the metascheduler, and that is the machine to

which users actually submit jobs, and from there the metascheduler sends the job to one

of the clusters that make up the grid, again based on the job’s requirements. The head

node of that cluster then, as per usual, sends the job to one of its worker nodes, on which

the job executes. Once the job has been completed, the output is streamed back to the

user.

The primary advantage of this approach, as opposed to simply making one very large

cluster, is that, generally, all the machines in any given cluster must be homogeneous in

terms of operating system and architecture. They also are typically geographically

proximate. While these restrictions still apply to any given cluster in the grid, the grid

itself can be both far-flung and heterogeneous, since it is nothing but a group of clusters.

There are two obvious ways for the metascheduler to keep track of which clusters it

can send jobs to: either the head nodes of the clusters can directly send information to the

metascheduler, or they can send the information to a central registry and the

metascheduler can then query the registry. It is this latter approach that is in use at UVic.

The registry contains a list of what machines have what services available, and a

background process running on the metascheduler populates the list of clusters to which

jobs can be sent by querying the registry and determining how many machines have the

job submission service available.

1.2 The Globus Toolkit[2]

The Globus Toolkit is the software used in GridX1[3], the Canadian grid of which the

UVic cluster is a part, to provide the behaviour described above. It provides simple

command-line tools for, among many other things, job submission and file transfer. It

also provides support for metascheduling, which was described above, though it does not

require it; jobs can be directly submitted to any of the individual clusters that make up the

grid, or they can be submitted to the metascheduler machine, which will then handle the

sending of the job to one of the clusters. The latest version of Globus accomplishes this

through the standard web services protocol[4]; job submission, file transfer, and all other

features of Globus are services and can be accessed from any machine through the

Globus container. The Globus container is a background process that runs on each

machine on the grid; all requests made to Globus go through this container. The approach

of using a standard protocol is intended to allow for easy extensibility; prior versions of

Globus had used a custom protocol[5], but this was found to be insufficiently robust and

extensible.

The only one of Globus’ many services that was frequently used was Grid Resource

Allocation and Management (GRAM), the job submission service. This works by sending

the job to a Local Resource Management System (LRMS) specified by the user installed

on a cluster specified by the user. Two examples of Local Resource Management

Systems are Condor and PBS. Condor, however, can also be used as a metascheduler, as

is described in the section about Condor. In either case, the job is submitted to Globus in

the same way: with the specification that it should be handled by Condor. What actually

happens is determined by whether or not the machine to which the job was submitted was

a metascheduler or the head node of a cluster that uses Condor for its LRMS.

1.3 Condor

Condor, a piece of parallel computing software developed at the University of

Wisconsin-Madison[6], was originally intended to run on a single cluster. The head node,

or Central Manager in Condor parlance[7], would have a list of worker nodes to which it

could send jobs; the Central Manager and worker nodes together form what is known as a

Condor pool.

In the case of multiple clusters, Condor can be used as a metascheduler; rather than

the Condor pool being populated by worker nodes, it is instead populated by the head

nodes of the various clusters that make up the grid. When a user submits a job to the

Condor metascheduler, it sends the job to one of the head nodes in the same manner as

the Central Manager would normally send the job to one of its worker nodes. From there,

the job is sent to one of the worker nodes, and the output from the job is ultimately staged

back to the metascheduler and then to the machine from which the user submitted the job.

1.4 The Portable Batch System[8]

The Portable Batch System (PBS) is a Local Resource Management System,

meaning that it is intended to be installed on a single computing cluster which consists of

many worker nodes and one head node. Jobs are submitted to the head node, which will

then send them to the worker nodes. PBS has many features, such as the presence of

multiple queues with different behaviours, but there is no need to go into any of them in

detail.

1.5 The BaBar Experiment

The BaBar experiment is a high-energy physics experiment being conducted at the

Stanford Linear Accelerator Centre (SLAC). To analyze the data it generates requires a

large amount of computing power, and as such gridX1 is participating in the analysis.

This simply entails submitting a job to the grid that executes a script that runs the

analysis, after properly setting up the environment.

2. Updating From GT2 to GT4

 As was mentioned above, old versions of the Globus Toolkit did not use the

standard Web-Services protocol, but rather each grid service used its own custom

protocol. This was difficult both to extend and to maintain; difficult to extend because the

creation of a new service required the creation of a new protocol, and difficult to maintain

because slight changes in the various protocols were often made between versions of the

services, and so the software was not properly backwards compatible. By contrast, the

latest version of the Globus Toolkit, Globus4, uses the Web-Services Protocol for all the

various grid services it contains, such as job submission and file transfer. In order to

maintain backwards compatibility, it also supports the use of the older services. In

addition to this advantage, it also provides better security, as under the old versions of

Globus the job service ran as a privileged user, whereas the job service in the new version

of Globus runs as a non-privileged user.

 In light of these advantages, the grid computing group at UVic decided to test the

functionality of Globus4 on a production-scale grid. The Muse cluster and the Mercury

cluster were the two clusters intended to be used for this purpose; however, only the

Muse cluster has as yet been set up to run jobs using GT4.

 During the setting up of the Muse cluster in order that jobs could be submitted to

it using GT4, several complications arose. The most severe of these was that it was

required that the current setup not be affected by the upgrade; that is, it was required that

jobs could still be submitted to the cluster using GT2. Furthermore, it was required that

the head node of the Muse cluster, calliope.phys.uvic.ca, not be altered in any way, as it

was pivotal that it remain working properly. It was therefore necessary to set up another

machine as an alternate head node to the Muse cluster. The machine that was ultimately

selected for this purpose was ugdev07.phys.uvic.ca. The metascheduler for this grid is

babargt4.phys.uvic.ca.

 The above diagram shows the desired setup for the test grid; once the job has

reached either of the head nodes, the transmission from the head node to the worker node

is handled identically, as that is done by the Local Resource Management System, which

in this case is PBS. From the user’s perspective, the only difference is the command used

to submit the job. He can either submit it to the metascheduler, in which case he can

request that it be submitted to either of the resources, or he can submit it directly to one

of the head nodes. In either case, the command will be different, but once the job has

reached the head node, the process appears identical. In reality, there are some

differences, such as that the transferring of input and output files for the job is handled by

a different service, but this should make no difference to the user.

 Successfully achieving this setup proved to be surprisingly difficult. In fact, it was

not achieved as it was originally intended; instead, it was set up so that

ugdev07.phys.uvic.ca simply redirected jobs that were submitted to it to

calliope.phys.uvic.ca, and from there they went to the worker nodes. Again, however,

from the user’s point of view, the functionality is identical.

 The upgrade from GT2 to GT4, once it was completed, did not seem to have any

effect on the stability of the cluster: jobs that were submitted correctly still typically

executed correctly. Occasionally the Globus container on either the metascheduler or the

head node would have to be restarted to fix inexplicable job failures, but this is not a

time-consuming operation. It is ultimately to be hoped that future releases of Globus will

be more stable than the current release. Another concern was that the new Web-Services-

based grid services would be slower than their older equivalents. No noticeable

performance difference was detected with test jobs; they were simple enough that they

executed too quickly in either case to get an accurate sense of the performance difference,

if one existed. This was later tested thoroughly for both job submission and file transfer;

the details of the job submission tests will be addressed in the section on the submission

of actual BaBar jobs. The file transfer test was simple; using both the pre Web-Services

file-transfer mechanism (gridFTP) and the Web-Services file-transfer mechanism (RFT),

the same file was transferred and the operation was timed. As a separate point of interest,

the effect of the number of parallel data streams used in the transfer was measured. From

one to twenty data streams were used, with each number of data streams being tested ten

times. The times for each were then averaged and the following plot produced.

 The size of the file used for the transfer was approximately 56 megabytes. The

time difference in transferring a file of this size is quite small, as can be seen from the

scale on the y-axis of the graph: less than ten seconds even where the disparity is most

extreme. The general trend does seem to be that RFT is slightly slower; however, given

that the applications that the grid will be running take several hours at least to finish, a

difference of ten seconds in file transfer is negligible.

3. Running BaBar Applications

Once the grid was set up as described above, and simple test jobs were submitted

to it, it was used to run test BaBar applications. That is, jobs were run that used the BaBar

software, but real input data was not used. The input data is categorised based on run

number: different run numbers use different data. The run numbers used for testing

purposes were all in the validation range, meaning that the jobs were not processing any

real data. However, since everything else about the submission is identical, if validation

runs were made to work then real runs should work also.

 A perl script was already present that would, when given a set of run numbers,

submit all the runs to the GT2 metascheduler, ugpro03.phys.uvic.ca, and from there they

would follow the progression in the above diagram: from the metascheduler, they would

go directly to calliope.phys.uvic.ca and then to a worker node. It is a different

metascheduler than is indicated in the diagram, but it still submits jobs to

calliope.phys.uvic.ca. It was necessary that a script like this be written that would instead

submit the jobs to the GT4 metascheduler, babargt4.phys.uvic.ca.

The process is similar conceptually, but the details are actually somewhat

different. The original perl script worked by directly running the command to submit a

job to Condor, rather than to Globus; this at first seemed rather confusing, but it

ultimately produces the same effect as submitting a job to Globus and specifying that it

should be handled by Condor, which is the alternative way of submitting a job for

metascheduling. However, it was desired that either approach should be possible, so two

perl scripts had to be written: one to submit jobs directly to Condor on the metascheduler,

and one to submit jobs to Globus, specifying that the job should be handled by Condor on

the metascheduler. The syntax for job description is quite different depending on whether

or not the job is to be submitted to Globus or to Condor; if it is to be submitted to

Condor, the information about the job is written in a syntax specific to Condor, whereas

if it is to be submitted to Globus, the information about the job is written in XML[4].

Thus, the two scripts were quite different from each other, for each one had to make a file

containing information about the job to be run. Indeed, one job description file had to be

created for each job, since the run number had to be specified within it. The script to

submit jobs directly to Condor was quite similar to the original perl script used for GT2,

with only a few minor changes being necessary. The other one, for the reasons detailed

above, had to be entirely different.

The executable to be run is also specified in the job description file. In this case,

the executable given there is not in fact the software that analyzes the data, but a script

that runs other scripts that set environment variables, manipulate files, and eventually

finally run the software to analyze the data. In these scripts, the input file for the job is

transferred, using Globus’ file transfer service, to the directory where the job is to be run.

Due to changes between GT2 and GT4, this required modification. The details of the

problem are fairly technical, but it had to do with the fact that the job was executing as a

different user than the one that submitted it. However, it was only a problem when the job

was submitted through Globus to Condor, not when it was submitted directly to Condor,

and the transferring of input files can be specified in the XML job description file syntax

used by Globus, so this was used instead.

This was the only major problem encountered, and once it was resolved the

efficiency of job submission with GT2 as compared with GT4 was tested. It was again

thought that the GT4 job submission service might be less expeditious than the GT2 job

submission service, since it is Web Services-based. To this end, many jobs were

submitted to the GT4 metascheduler, both directly to Condor and through Globus to

Condor. However, it was only possible to submit jobs directly to Condor on the GT2

metascheduler; submitting through Globus to Condor was not tried. Submitting directly

to Condor does not take Globus completely out of the equation, however, since it is still

involved in the metascheduling process. It was found that the average time from the job’s

submission to its ultimate completion when submitting directly to Condor was actually

slightly lower when going through the GT4 metascheduler. Going through Globus to

Condor was slower than either, as was expected due to the extra steps involved, but the

time difference was, as in the file transfer case, practically negligible. The average times

measured are as follows: submitting directly to Condor on the GT2 metascheduler took

274 minutes; submitting directly to Condor on the GT4 metascheduler took 273 minutes;

and submitting through Globus to Condor on the GT4 metascheduler took 276 minutes.

These numbers were generated by averaging the total elapsed times of about twenty runs.

4. Conclusion

 There are two major areas of work still left to be done. Firstly, the monitoring of

the running jobs on the existing grid needs to be improved. Some work was done on this,

but much is left to be done. At present, there is a perl script that can be run that will

generate a graph of the failed and finished jobs on the Muse cluster, but this script will

have to be significantly improved upon and set up to run automatically. Secondly, it was

originally intended that the metascheduler have access to two major GT4-based clusters:

the Muse cluster and the Mercury cluster. However, the Mercury cluster has not yet been

set up such that the metascheduler can send jobs to it. Setting it up in this fashion should

not be difficult; it should simply be a matter of mimicking the configuration of the

existing cluster. Ultimately, the layout of the grid should be as presented in the following

diagram:

5. Acknowledgements:

 Thanks especially to Dr. Ashok Agarwal and Dr. Randall Sobie for their

supervision and help throughout the term. Thanks also to Duncan Penfold-Brown, Dan

Vanderster, Ian Gable, Ron Desmarais, Howard Peng, Greg King, and Andre

Charbonneau..

6. References

 [1] BaBar Project (2007)

 http://www-public.slac.stanford.edu/babar/

 [2] The Globus Toolkit (2007)

 http://www.globus.org/toolkit/

 [3] GridX1 (2007)

 http://www.gridx1.ca/

 [4] GT4 Release Manual (2007)

 http://www.globus.org/toolkit/docs/4.0/

 [5] GT2 Release Manual (2007)

 http://www.globus.org/toolkit/releasenotes/2.0/

 [6] Condor (2007)

 http://www.cs.wisc.edu/condor/

 [7] Condor Administrator’s Manual (2007)

 http://www.cs.wisc.edu/condor/manual/v6.8/3_1Introduction.html#6338

 [8] PBS (2007)

 http://www.openpbs.org/

