

Abstract
When I started working for the High Energy Physics Research Computing (HEPRC) at the

University of Victoria, Cloudscheduler, a software system that they developed and maintained, had unit

tests for two of its three application programming interfaces (APIs). I was given the task of creating a

test framework and some unit tests for the third interface. I considered several frameworks to automate

web browser interaction, and several others to facilitate the execution of unit tests. After settling on

Selenium and Unittest for these roles, I created common functions to automate the assertion of the

presence of elements and submission of forms. I created thorough unit tests for a few of the web

interface pages, but was unable to do so for the rest because of the short-term nature of my position

with HEPRC.

Report Specification
Audience

The intended audience is others who wish to run or improve the unit tests of Cloudscheduler,

whether or not they are working with High Energy Physics Research Computing as I was.

Prerequisites
An understanding of basic computing terms (such as server, network, etc.) is required.

Purpose
This report documents the reason unit tests were created for Cloudscheduler’s web interface as

well as the methodology used to create them. It may be useful to anyone who wishes to learn about,

run, or improve these tests.

Table of Contents
Abstract..1
Report Specification...1

Audience..1
Prerequisites..1
Purpose..1

Glossary...2
Introduction..3

Cloudscheduler..3
Existing Tests...4

Options Explored...5
Testing Frameworks..5

Existing Test Framework..5
Unittest..5
Pytest..5

Browser Automation Tools..6
Selenium...6
Mechanize...6
Zope.testbrowser...7

Solution Implemented..7
Setup..7
Firefox Profiles..7

Conclusion...8
Acknowledgements..8
References..9
Appendix..10

Glossary
application programming interface (API) A standardized interface for a program that can be used to

connect it to other programs.

command line interface (CLI) A user interface that consists only of text. The user gives

commands which are executed and may produce output.

graphical user interface (GUI) A user interface that uses graphics to communicate with

the user.

Hypertext Transfer Protocol (HTTP) A protocol that defines a way to send information over the

internet.

JavaScript Object Notation (JSON) A human-readable data interchange format.

job A computing task that can be outsourced.

Python A high-level computer programming language that

supports both functional and object-oriented

programming.

test case A single test defined by required test conditions, a set of

inputs, and a set of expected outputs.

test suite A collection of related test suites and / or test cases which

may also include setup or tear down procedures.

virtual machine (VM) A software simulation of a physical machine that can

operate on a different machine which may have a different

architecture and / or operating system.

unit test A small program or section of a program that is created to

test a small component or function of a software system in

isolation from the rest of the system.

Introduction
Cloudscheduler

Cloudscheduler is a Python program that manages the booting and shutting down of virtual

machines (VMs) on servers, which it refers to as clouds, as necessary to facilitate the efficient

execution of jobs in these VMs [1]. A server that is running Cloudscheduler and a few other programs

(which must be configured to communicate with Cloudscheduler) is known as a Cloudscheduler server.

A client submits jobs, along with information about the resources that should be allocated to run them,

to a Cloudscheduler server, which initially stores these jobs and metadata in a queue in a database.

Cloudscheduler queries the database and searches for clouds it is connected to that have the hardware

and software necessary to run the jobs in the queue. If these clouds already have VMs running that

match the specifications, Cloudscheduler will run the jobs in these VMs. Otherwise it will boot new

VMs as necessary. If a VM is idle for a certain (configurable) length of time, Cloudscheduler will shut

it down to conserve resources.

To keep jobs organized and allow different levels of control to different people,

Cloudscheduler defines groups and users, the details of which are also stored in the database. All

actions are performed by users. Users may be in any number of groups, but must be in at least one to

perform any actions. Only super users can create and delete groups and users. Each cloud belongs to a

single group, and clouds may be created, modified, and deleted by any of the group’s users. A client

may query and control Cloudscheduler servers over the internet in three different ways: by sending

Hypertext Transfer Protocol (HTTP) requests which contain and request JavaScript Object Notation

(JSON) data, by using the Cloudscheduler command line interface (CLI) (if it is installed on the client

machine), or by using the web interface. Sending HTTP requests invovles managing a few tokens and

credentials that must be sent in each request. Therefore, it is meant to be a low-level application

programming interface (API) which may be built upon. The CLI does just this, keeping track of the

tokens and credentials, and providing a more user-friendly interface. It is also includes documentation

for nearly every command one may use. The web interface, which is viewed in a web browser, operates

on and displays the same data that the CLI delivers, but through web pages. The main status page

refreshes regularly, giving one a live overview of the many VMs running on many clouds

simultaneously. A view of the status page is given in the appendix.

Cloudscheduler is maintained and improved by High Energy Physics Research Computing at

the University of Victoria. In my work experience position there I improved unit tests which already

existed for the HTTP API and CLI, and designed and created unit tests for the web interface. In this

report I will explain how the existing test framework worked, the options I explored when designing

the framework for the web interface unit tests, and how I implemented the web interface tests.

Existing Tests
Unit tests already existed for the HTTP API and the CLI. These were created and run using a

custom framework. The main program, which was written in Python, ran all Python programs in its

present directory that matched a particular naming scheme. These were assumed to be test suites. In

each HTTP test suite, a single function was called many times, each time submitting a request and

expecting a response matching given criteria. A similar function existed for CLI commands. Both

would print the details of the test and its result (whether success or failure). Examples of HTTP and

CLI test cases are given in the appendix. This system was built from scratch, not using any external test

framework. This was justifiable, because the tests only varied in their inputs and expected outputs, and

a custom test framework permitted the abstraction of nearly the entire test execution process. This

technique did, however, restrict the types of expectations that could me made about a response when

writing test cases. For example, in HTTP tests it was not feasible to assert that an object did not appear

in a list of objects returned by the server, nor to assert how many objects appeared in such a list.

Options Explored
Testing Frameworks

Because both Cloudscheduler and the existing unit tests were written essentially entirely in

Python, it made sense to only explore Python testing frameworks.

Existing Test Framework
Using the existing framework would not have worked well, because it was designed to use a

single function that would take a collection of inputs and and expected outputs, perform a static list of

actions, and report on whether the expected outputs matched the actual. In the case of the web

interface, the actions that need to be performed are different for each page and there are multiple ways

to give inputs (through clicking and typing). Certain actions must be separated by a waiting period so

that the web browser waits for a new page or dynamically generated elements to load before making

assertions about their contents. For these reasons it would be difficult and cumbersome to encode all

types of web actions and all elements expected to be present on each page in Python objects.

Unittest
Unittest is a testing framework that is part of the Python standard library [2]. As a result it is

widely used and likely to be supported far into the future. It is an xUnit framework, making it easier for

someone who has used another xUnit framework such as JUnit to understand and use it, even if they do

not have much experience with Python. A side effect of this is that Unittest uses many assert methods

(such as assertEqual, assertFalse, assertIsNone, assertNotIn, and assertRaises). These methods must be

remembered or looked up in a reference if Unittest is to be used according to its design. It groups

similar tests into classes, and allows execution of individual tests from the command line. Considering

these pros and cons, I chose to use Unittest as the framework for the web interface tests.

Pytest
Another popular and well-regarded Python test framework is Pytest [3]. It is not part of the

standard library, meaning that anyone who wished to run the tests would have to install it. Pytest tests

are often more compact than unittest tests, though neither suffer from verbosity. It supports test

parameterization using decorators, meaning a decorator can be placed above a function to specify that it

should be run with multiple inputs, as well as specifying the expected output for each. While some of

the web interface tests did require performing the same operation for several inputs, each of these

inputs was usually a fairly large dictionary, meaning it would be awkward to put it all into a decorator.

The inputs were also assembled as combinations of parameters from a different dictionary. Pytest also

uses the built-in assert keyword for all assert statements rather than using many assert methods as

Unittest does. Although Pytest has advantages that Unittest lacks, I believed Unittest was the better tool

for the job.

Browser Automation Tools

Selenium
Selenium is a collection of frameworks that implement the WebDriver specification for

automating web browser interaction in several languages, one of which is Python [4]. Selenium is

among the most popular web automation frameworks for Python, and is one of the only ones that

creates a full instance of a third-party web browser with which to interact. In addition to giving it

support for JavaScript, this allows it to catch problems that are caused by the graphical user interface

(GUI), such as an element being unclickable because it is covered up by another element. For these

reasons it was chosen to automate browser interaction.

Mechanize
Another web automation option for Python was Mechanize [5]. Mechanize automates the

filling of forms and has a system to find and click on links. However, it implements its own low-feature

browser rather than connecting to a well-known one. As a result it does not it does not support

JavaScript, which is used in the web interface, making it impratical to use in the tests [6]. It would also

have prevented me from testing how browsers that I expect the end user to actually use display the

interface. Forms and links are the only elements that it provides functionality for, so testing other

elements such as the content of a table would require another tool or manual HTML parsing.

Zope.testbrowser
Zope.testbrowser was created for Zope, web application server software written in Python [7].

It does support form submission, but similarly to Mechanize it does not parse other HTML elements or

create objects that can be interacted with as Selenium does. This would force me to use another tool to

parse other elements. Zope.testbrowser also lacks a GUI, meaning it is unable to find GUI-related

issues as Selenium is.

Solution Implemented
Setup

The HTTP tests had a different setup routine for each object. When executed through a

connection to one of HEPRC’s Cloudscheduler development servers, each setup routine took usually

between 20 and 60 seconds to run. The CLI tests had only one setup routine, but since this had to create

more test objects it took closer to 80 seconds. These times are usually independent of the client

machine, because it spends the vast majority of its time waiting for the server. Since the web interface

setup had to start a web browser and wait for it to load a webpage in addition to destroying old test

objects and creating new ones, it was expected to take longer. It was therefore desirable to run it once at

the beginning of testing rather than for each web interface page. I added a boolean value to the existing

credentials file to indicate whether the tests were currently setup or not. This boolean was checked

before tests for each page were run, and setup was run if necessary. I also added a utility script to run

the clean up (when one was finished testing) or flip the boolean in the credentials file (which would

trigger a clean up and setup, which is necessary when running certain tests twice in a row).

Firefox Profiles
Cloudscheduler uses HTTP basic access authentication to restrict access to the web interface

to Cloudscheduler users. This causes the browser to open a particular kind of dialog box with username

and password fields. The ability to input arbitrary text into these fields is not included in the the

WebDriver specification, and therefore is not supported by Selenium [8]. This was solved by requiring

one who wishes to run the tests to create a Firefox profile for each test user that performs actions that

has the credentials of this user saved in it. They are then prompted for the paths of the directories where

these profiles are saved the first time they run the web interface tests (at which time the test credentials

file is automatically created). When preparing to run tests, these paths are provided to WebDriver to

create the instances of Firefox in which the web interface is tested. Firefox automatically enters the

saved credentials into the prompt, and WebDriver accepts the prompt (which is equivalent to clicking

“OK”).

I investigated whether these profiles could be created automatically (since the test framework

has all of the credentials), but Firefox encrypts the credentials. I was unable to determine the encryption

method Firefox uses, and based on the complexity of tools I found to decrypt these passwords, I

decided that the cost of implementing the encryption would likely not be worth the simplicity it would

allow in running the tests. Three test users attempt to perform actions and therefore require profiles: a

non-super user, a super user, and a user who is not in any groups.

Conclusion
I constructed the framework to test the web interface, including common functions to assert

the existence of elements and submitting forms, and implemented tests for two of the pages. However,

because of the limited (four-month) length of my position with HEPRC, I was unable to implement

tests for the other eight pages. I do not forsee a significant number of other common functions needing

to be written, so I believe the task of implementing the other tests would be straightforward.

Acknowledgements
I would like to thank Colin Leavett-Brown, Colson Driemel, and Rolf Seuster for their

patience in helping me debug problems and teaching me, and for giving me the freedom to make

decisions about the implementation of the web interface tests.

References
1. C. Leavett-Brown, R. Seuster, M. Ebert, M. Paterson. “Cloudscheduler/README.md at dev ·

hep-gc/cloudscheduler.” https://github.com/hep-gc/cloudscheduler/blob/dev/README.md

(accessed Apr. 20, 2020).

2. E. Melotti, et al. “Unittest — Unit testing framework — Python 3.8.2 documentation.” Python.

https://docs.python.org/3/library/unittest.html (accessed Apr. 15, 2020).

3. R. Pfannschmidt, et al. “Pytest: helps you write better programs — pytest documentation.”

Pytest. https://docs.pytest.org/en/latest/ (accessed Apr. 15, 2020).

4. D. Burns, et al. “Selenium Documentation — Selenium 3.14 documentation.” Selenium. https://

www.selenium.dev/selenium/docs/api/py/api.html (accessed Apr. 20, 2020).

5. K. Goyal, et al. “Mechanize — mechanize 0.4.5 documentation.” Read the Docs.

https://mechanize.readthedocs.io/en/latest/ (accessed Apr. 15, 2020).

6. K. Goyal, et al. “Frequently Asked Questions — mechanize 0.4.5 documentation.” Read the

Docs. https://mechanize.readthedocs.io/en/latest/faq.html#jsfaq (accessed Apr. 15, 2020).

7. C. Watson, et al. “Zope.testbrowser — zope.testbrowser 5.0 documentation.” Read the Docs.

https://zopetestbrowser.readthedocs.io/en/latest/index.html (accessed Apr. 15, 2020).

8. A. Tolfsen, et al. “Missing support for HTTP authentication prompts · Issue #385 ·

w3c/webdriver.” GitHub. https://github.com/w3c/webdriver/issues/385 (accessed Apr. 20,

2020).

https://docs.pytest.org/en/latest/
https://docs.python.org/3/library/unittest.html
https://github.com/hep-gc/cloudscheduler/blob/dev/README.md
https://www.selenium.dev/selenium/docs/api/py/api.html
https://www.selenium.dev/selenium/docs/api/py/api.html
https://github.com/w3c/webdriver/issues/385
https://zopetestbrowser.readthedocs.io/en/latest/index.html
https://mechanize.readthedocs.io/en/latest/
https://mechanize.readthedocs.io/en/latest/faq.html#jsfaq

Appendix

Figure 2: An example of an HTTP test case.

Figure 3: An example of a CLI test case.

Figure 1: The status page of the web interface.

	v1.0.pdf
	Abstract
	Report Specification
	Audience
	Prerequisites
	Purpose

	Table of Contents
	Glossary
	Introduction
	Cloudscheduler
	Existing Tests

	Options Explored
	Testing Frameworks
	Existing Test Framework
	Unittest
	Pytest

	Browser Automation Tools
	Selenium
	Mechanize
	Zope.testbrowser

	Solution Implemented
	Setup
	Firefox Profiles

	Conclusion
	Acknowledgements
	References
	Appendix

