
University of Victoria
Faculty of Engineering

Summer 2006 Work Term Report

Building a Scheduler Adapter for the GridWay
Metascheduler

Department of Physics and Astronomy
University of Victoria

Victoria, Canada

Patrick Armstrong
0532342

Computer Science
patricka@uvic.ca

August 29, 2006

In partial fullfillment of the requirements of the
Bachelor of Science Degree

Supervisor’s Approval: To be completed by Co-op Employer
I approve the release of this report to the University of Victoria for evaluation purposes only.
This report is to be considered: NOT CONFIDENTIAL CONFIDENTIAL

Signature Position Date

Name Email Fax

Report Specification

Audience

This report is intended for, and (hopefully) should be interesting to those
involved or interested in distributed and high performance computing,
applications of Web services, and computer science and software engineer-
ing in general.

Prerequisites

The reader should have some knowledge and understanding of general
computer-related topics. Most of the grid related terminology and jargon
are explained prior to their use; however, this document does assume that
the reader is comfortable with computers, writing software, and Unix-like
systems.

Purpose

The purpose of this document is to familiarize the reader with grid com-
puting in general, as well as outline some of the work done for the grid
computing projects collaborated on by UVic and NRC, specifically the
Metascheduling options examined by the team.

1

Contents

1 Introduction: Grid Computing 3
1.1 The Globus Toolkit and the Grid 3
1.2 Grid Resource Allocation and Management 4
1.3 Web Services . 4
1.4 CANARIE Project . 4

2 Metaschedulers and Resource Brokers 5
2.1 Local Resource Management Systems 5
2.2 GridWay . 6

3 Metascheduler Deployments 7
3.1 GCGate01: Production GT2 Metascheduler 7
3.2 Ugdev06: GT4 Condor Metascheduler 7
3.3 Ugdev08: GridWay Metascheduler 8

4 Improving the GridWay Scheduler Interface 8
4.1 Structure of a Scheduler Interface 9
4.2 The GridWay Interface: Problems and Solutions 10

4.2.1 The Stripped fileStageIn Element 10
4.2.2 The <extensions > Element 10
4.2.3 One-hop vs. Two-hop File Staging 11
4.2.4 Implementing One-hop File Staging 12
4.2.5 Staging in Executables 13

4.3 Current Status and the Future 13
4.3.1 Proxy Management . 14
4.3.2 Rank and requirements 14
4.3.3 Integration with Registry 14

5 Conclusion 15

2

1 Introduction: Grid Computing

In the last few years, many tasks that were seen as computationally un-
feasible, such as protein folding, the simulation of particles studied in
high energy physiscs and breaking cryptographic cyphers, has become
feasible by applying the principles of distributed computing. Generally,
distributed computing is accomplished by breaking one large task into
smaller tasks that can easily be distributed to machines dedicated to ac-
complishing these tasks.

Grid computing is a specific type of distributed computing that is used
to make use of a wide variety of distributed, heterogeneous resources to
solve problems that are too computationally intensive for any one super-
computer, or cluster of computers. A useful analogy is to compare the grid
to the power grid. Users do not need to think about which generator will
produce the power that will run their appliance, and they assume that the
power from the power grid will always be available. In a computational
grid, one would simply submit a job to ”The Grid”, and then the job would
be completed on one of the grid’s resources, and then be sent back to the
client. Ideally, any user could have as much computational power as he
needs from the grid, in the same way any client can get as much electrical
power as he requires from the power grid.

1.1 The Globus Toolkit and the Grid

The Globus Toolkit (GT) is a free software (Apache License, Version 2.0)
middleware suite used to create grids. It is considered the standard grid
middleware suite, and is a reference implementation for a number of grid
standards, such as the OGSI. The aim of the Globus Alliance, the makers of
Globus, is to produce a standard, secure mechanism for grid components
to interact with one another.

Put simply, the Globus Toolkit provides a mechanism to send a job,
generally an executable and the data files it requires, to a grid resource,
generally a cluster of computers dedicated to processing computationally
intensive jobs. After the job is complete, the output of the job is sent back
to the client machine.

3

1.2 Grid Resource Allocation and Management

The Grid Resource Allocation and Management (GRAM) interface is the Globus
component for handling the ”initiation, monitoring, management, schedul-
ing, and/or coordination of remote computations[2].” GRAM allows users
to create and control their jobs through a standard API, making develop-
ment of grid-enabled applications simple.

GRAM can refer to both the Web services implementation of Globus,
as well as the pre-Web services version, implemented in both GT 2 and GT
4. The current version of GRAM does all of its communications through
Web services, making it very simple for applications to talk to GRAM and
leverage its capabilities.

1.3 Web Services

Web services provide a standard way for services to interact with and ac-
cess one another over a network[1]. The Web Services Architecture was de-
fined by the World Wide Web Consortium (W3C) to standardise this inter-
action using a common XML-based description language called the Web
Services Description Language, or WSDL. Web services communicate this
information using SOAP, a protocol for exchanging XML over a network.

Put simply, Web services allow a software program to communicate
over a network with another program, similar to the way in which pro-
cesses can communicate with one another on a single computer system.
All that is required of both programs is that they use a SOAP binding for
network access, and that they pass messages in the WSDL format. Other
aspects of the program, such as the programming language used in im-
plementation, the architecture it runs on, or the internal workings of the
software are left up to the developer. This indifference to implementation
details makes Web services ideal for communication between grid compo-
nents, as there are many fewer constraints on grid application developers,
encouraging the creation of interoprable, grid-enabled software.

1.4 CANARIE Project

The project that the author worked on, and the purpose of the work de-
scribed in this document was to evaluate the use, creation and deployment
of a Web services-based computational grid. This project was funded by

4

CANARIE, Canada’s advanced Internet development organization, and
is a joint project between the University of Victoria and the National Re-
search Council.

2 Metaschedulers and Resource Brokers

Metaschedulers and resource brokers are a core component of many grid
projects. Their job is to pick appropriate grid resources to execute jobs they
have recieved from grid users. A metascheduler is an essential component
if grid computing is to follow the electrical grid model, where a user can
easily send a job to ”The Grid” for computation, and expect to have his job
completed on one of the grid’s resources without his having to think about
where it is going. To accomplish this, a metascheduler will fetch informa-
tion about the state of the grid from registry, then compare the abilities of
each grid resource to the requirements of the job. Once this process has
completed, the metascheduler submits the job to a resource, and manages
the process of transferring data from the client to the resource, and the
output from the resource to the client.

The distinction between a metascheduler a resource broker lies in how
the machines are set up to be used. Generally, a metascheduler runs on a
centralized server, and users submit jobs to this machine from their client
machines. The metascheduler then carries out the matchmaking process
and submits the job to the resource. This is different from how a resource
broker works, where they are usually run on a client machine, which car-
ries out the matchmaking process locally, then submits the job directly
to the grid resource. The CANARIE project aims to deliver a grid based
around a metascheduler, however many grid projects, such as NorduGrid
and Gridbus use a per-client resource broker.

2.1 Local Resource Management Systems

A Local Resource Management System (LRMS) is a suite of software that
manages a cluster of computers, and allows a user to use a cluster of com-
puters with relative ease. In general, an LRMS automates the task of pick-
ing a resource with which to run a job, transferring files to worker nodes,
managing the execution of the process, and bringing the output back to the

5

controlling machine. The two types of LRMS currently in use in the Cana-
dian GridX1 grid are called the Portable Batch System (PBS) and Condor.

The Portable Batch System The Portable Batch System is an implemen-
tation of a simple concept: it takes a computational job that a user has
been submitted on a head node, a computer that controls the operation of
a cluster, then picks one of its dedicated worker node machines to run the
job. Once the job is complete, the output of the job is sent back to the head
node, where the user can read his output.

Condor The Condor Cycle Scavenger works similarly to PBS: jobs are
submitted to a controlling central node, called a Condor Collector, which
then picks a machine under its control to run the job. While Condor can
use dedicated compute nodes to run its jobs, it main attraction is that it
can make use of idle computing resources to run its jobs, much like the
Folding@Home protein folding software. The Condor Collector maintains
a pool of resources, which make themselves known after they sit idle. A
job can then be submitted and run on the machine, but execution will halt
if a key is pressed, a mouse is moved, or there is significant non-Condor
CPU usage. In this way, an organization can make use of the many idle
hours of CPU time from its workstations, lab machines and under-utilized
servers, with minimal additional infrastructure cost.

2.2 GridWay

The GridWay Metascheduler is a new Globus “incubator project” that is
able to accomplish many of the tasks you would expect of a metasched-
uler, such as submitting and monitoring jobs and matching using rank
and requirements. GridWay also has a number of interesting features. For
example, GridWay is able to dynamically acquire and monitor resources
using the standard Globus MDS4 Index Service, Which means that a grid
resource administrator could easily add his resource to a grid system by
forwarding his local registry to the central grid registry, or a registry ad-
ministrator can add a resource by pulling information downstream from
a grid site. GridWay also allows for the use of advanced scheduling poli-
cies through the use of “Scheduling Drivers”, which can be written in any
language using any algorithm. The scheduler simply needs to be able to

6

output its commands as text, which the central GridWay daemon will ex-
ecute.

3 Metascheduler Deployments

Currently, there are a number of metaschedulers that have been deployed
in both production and development evironments. This section will high-
light a few of them to explore a couple of the solutions to the metaschedul-
ing problem.

3.1 GCGate01: Production GT2 Metascheduler

GCGate01, a part of the GridX1 project[4], is a general-purpose metasched-
uler, and has been used as an interface to jobs from the LHC Computing
Grid (LCG) and is now being used for jobs from the BaBar experiment.
GCGate01 uses Globus 2.4 middleware to receive and submit jobs to a
number of different grid-enabled clusters in Canada.

GCGate01 uses Condor to schedule jobs it recieves, and is able to sub-
mit jobs to Globus resources using the Condor-G interface[5]. The creators
of Condor-G assumed that Condor-G would act as a front end to the grid,
but GridX1 project wanted to use GCGate01 as a central metascheduler,
being able to submit jobs to it via Globus. This additional functionality
is not supported by default with the Globus Condor job manager, so the
GridX1 project modified the stock Condor job manager to be able to use
Condor-G grid functionality. Some credential management modifications
were also made so that the metascheduler is able to fetch fully proxy cre-
dentials from a MyProxy server using the partial proxy that GT receives
from the client.

3.2 Ugdev06: GT4 Condor Metascheduler

When the CANARIE project was attempting to implement a Web services
metascheduler, the team decided that a similar solution to the one used in
the GridX1 project could be used. Condor-G now supports submission of
jobs to GT4 WS-GRAM resources, and WS-GRAM can still submit to the
Condor LRMS.

7

There are a few differences in implementation, however. First, rather
than using MyProxy to manage credentials on the metascheduler, they
decided to use Globus’s credential delegation facility, the DelegationFac-
toryService. This allows a grid user to simply delegate his proxy to the
metascheduler, which that machine can use for any grid operations it does
for that user. This way, there is no need to set up a MyProxy server for the
metascheduler to use.

3.3 Ugdev08: GridWay Metascheduler

An alternate solution to the Condor-G-based solution above is one based
on GridWay. The GridWay metascheduler provides a fully functional re-
source brokering system. One limitation of the default install however, is
that it provides no facility for submitting jobs remotely, that is, a user must
log on to the machine hosting GridWay to submit jobs.

As a solution to this problem, the GridWay project has created a proof
of concept GRAM scheduler interface called GridGateWay. The 0.9 release
of this software allows a user to submit simple jobs that do not require
any staging in or out of files to the execution host. This is unfortunate, as
many jobs will require staging in of custom executables, scripts, and data,
as well as the staging out of output created by the job. The remainder of
this report will explain the details of implementing these features in the
GridWay scheduler interface.

4 Improving the GridWay Scheduler Interface

The purpose of a GRAM scheduler interface is to provide a way for the
GRAM Managed Job Service to submit, check the status of, and cancel jobs
on the LRMS. The most difficult of these tasks is mapping job description
metadata written for Globus into a format acceptable for an LRMS. Fig-
ures 1 and 2 show an example of such a mapping. The mapping process
from Globus metadata to a LRMS like PBS or Condor can be a difficult
task, often because of the solutions of the common problems in distributed
computing, like file staging and execution management are often solved
in different ways, which means there can not always be a one-to-one map-
ping between the two descriptions. This translation can be especially diffi-
cult when the scheduler interface is submitting jobs not to an LRMS, but a

8

<job>
<executable>/bin/uname</executable>
<argument>-a</argument>
<directory>/tmp</directory>
<stdout>/tmp/stdout</stdout>
<stderr>/tmp/stderr</stderr>
<fileStageIn>

<transfer>
<sourceUrl>

gsiftp://machine.ca/tmp/dat.dat
</sourceUrl>
<destinationUrl>

file:///tmp/dat.dat
</destinationUrl>

</transfer>
</fileStageIn>
<fileStageOut>

<transfer>
<sourceUrl>

file:///tmp/out.dat
</sourceUrl>
<destinationUrl>

gsiftp://machine.ca/tmp/out.dat
</destinationUrl>

</transfer>
</fileStageOut>

</job>

Figure 1: Globus job description

EXECUTABLE=/bin/uname
ARGUMENTS=-a
INPUT_FILES=gsiftp://machine.ca/tmp/dat.dat dat.dat
OUTPUT_FILES=out.dat gsiftp://machine.ca/tmp/out.dat
STDIN_FILE=/dev/null
STDOUT_FILE=file:///tmp/stdout
STDERR_FILE=file:///tmp/stderr

Figure 2: GridWay job description

metascheduler like GridWay. However, before examining the specific de-
tails of this problem, let us examine exactly what it is a scheduler interface
has to do.

4.1 Structure of a Scheduler Interface

A GRAM scheduler interface is implemented as a perl module, and needs
to implement three methods: submit , poll , and cancel [6]. Each of
these methods corresponds to some exchange of information between Globus
and the local scheduler.

The submit method is where the actual mapping of the job metadata
occurs. This method is always called with one argument, an associative
data structure called a GRAM JobDescription object which is created from
the job submitted by the user. The submit method takes the values in this
structure and creates a job description file that it will eventually submitted
to the local scheduler. This function returns the local job ID, which is then
used by the poll and cancel methods.

The poll method is used by Globus to get the status of the currently
running job from the local scheduler, which it passes on to the client who
owns the job. Usually this is done by running the local scheduler’s job

9

status command, for example the condor q command, with the job ID
returned by the submit method.

Finally, the cancel method is used to cancel a job on the local sched-
uler using the job ID from the submit method. This is done by running
the local scheduler’s job cancel command, for example the PBS qdel com-
mand.

4.2 The GridWay Interface: Problems and Solutions

As the beginning of this section explained, the mapping from Globus to
an LRMS or a metascheduler, is not always simple. Both Globus and Grid-
Way make a number of assumptions about the jobs they are handling, and
a variety of workarounds must be devised to make the system work prop-
erly.

4.2.1 The Stripped fileStageIn Element

The Globus Toolkit assumes that files staged in from a client machine to
a Globus host machine will never need to be re-staged to some other ma-
chine lower in the grid hierarchy. This assumption has lead to the JobDe-
scription data structure that does not contain a list of the files which are to
be staged in to the execution host. This can cause problems with software
that needs to re-stage files to its compute nodes, like Condor and GridWay,
because these pieces of software generally do not have homogeneous com-
pute resources, so they rarely have shared filesystems. A workaround to
this problem must then be devised to solve this problem.

4.2.2 The <extensions > Element

Globus 4 has provided the extensions element as a way for the Globus
user to add custom metadata in XML to a job description file. This XML
data is passed unparsed to the JobDescription object, and a scheduler in-
terface can parse this XML itself to extract the needed information. As we
cannot change how Globus stages files, and we can’t force it to include a
list of files that we need to stage in the JobDescription object, we must put
our list of files to be staged inside this tag, and handle it ourselves in the
scheduler interface.

10

Figure 3: Two-hop file staging Figure 4: One-hop file staging

Since Globus job description files already have a syntax for describing
a file transfer to a directory on the execution host, it makes sense to re-use
this syntax when submitting a job. Essentially, this means that we should
place our file staging elements inside an extensions tag. As a side effect,
this also means that Globus will not stage files in to the metascheduler, and
if we also place fileStageOut elements in the extensions element, it will
not stage files out. This happens to be useful, as we can then stage files in
and out from the client machine to the metascheduler in one hop, rather
than two.

4.2.3 One-hop vs. Two-hop File Staging

The Globus Toolkit works under the assumption that the machine that a
job is submitted to are where the files are to be accessed from, probably
with a shared filesystem like NFS, as was discussed earlier. However, this
assumption makes submitting a job to a metascheduler complicated, as
we do not actually want the files required for the job to be sent to the
metascheduler at all.

Unfortunately, when using standard Globus job metadata this is im-
possible, as at job submission time the client does not know where to send
the input files. Only once the metascheduler has picked a resource for the
job do we know where the files need to be sent. As a result of this, we
must use two-hop file staging, where we first copy all of the data files and
executables needed to run the job to the metascheduler, then after the job
has been scheduled, it must be sent to the execution host. When the job
has finished executing on the execution host, we must reverse the process.
This double copying of data, executables, and output is inefficient, and
will be especially costly when dealing with the enormous size of the data
used in scientific computing. Figure 3 illustrates two-hop file staging. A
superior solution to two-hop staging is to stage data directly from client to

11

resource, and from resource to client. This is called one-hop file staging.
One-hop file staging eliminates the problems of two-hop staging by

transferring file staging metadata to the metascheduler, which is then passed
on to the execution host. The metascheduler then initiates a third party file
transfer from the client machine to the execution host. While one-hop file
staging is an ideal solution, it can sometimes be difficult to implement.
Condor-G, for example, requires the files it will stage be present on the
metascheduler before it can transfer the files to another machine running
GridFTP. There is no way to do third-party transfers.

Fortunately, GridWay is able to do file transfers from a remote machine
to to an execution host using a gsiftp:// URL. This means that only meta-
data describing the file transfer must be sent to the GridWay metasched-
uler, not the actual data itself. This results in faster data transfers, as there
is only one file transfer operation per file, rather than two as well as less
load on the metascheduler itself.

4.2.4 Implementing One-hop File Staging

Earlier we discussed how moving the fileStageIn element inside the
extensions tag prevents Globus from parsing the element, thus preventing
Globus from staging the file in to the metascheduler. This is good, as we
want to prevent Globus from doing this, but we still need to handle file
transfers somehow. We can do this by passing off all the file transfer direc-
tives to GridWay itself. The scheduler adapter will then need to parse the
file transfer elements, and format them in the syntax GridWay expects for
its INPUT FILES field.

One benefit of this solution is that submitting a job that stages in files
requires only a tiny change to a Globus job description file intended to be
used for submission directly to a Globus resource: the must put extensions
tags around the fileStageIn and fileStageOut elements. A two-hop file
staging solution using the Condor-G metascheduler required adding mod-
ified fileStageIn and fileStageOut elements to the extensions tag, while
keeping standard fileStageIn and fileStageOut elements inside the job el-
ement. This resulted in rather clunky and confusing job description files.

12

EXECUTABLE=gwgramwrapper
ARGUMENTS=--fastmath --roundfloats
INPUT_FILES=gsiftp://sci.ca/tmp/science science

Figure 5: GridWay job with staged exe-
cutable

#!/bin/sh
Wrapper script for gridway

chmod 744 science
./science $@

Figure 6: Generated exe-
cutable wrapper

4.2.5 Staging in Executables

Unfortunately, GridWay makes a few assumptions about the jobs that it is
requested to submit as well. Contrary to the official documentation[7],
one of these is that GridWay expects the executable to be run will al-
ready be present on the execution host, or that they will be staged from
the metascheduler. This restriction imposed by GridWay makes it seem
that we will have to make a special exception for staging in executables,
and use two-hop staging while using the cleaner one-hop staging for input
and output files. Luckily, because of a few specificities of this problem, we
are able to use a fairly simple workaround. When GridWay submits a job
to a Globus resource, it puts all of its files inside a hidden directory on the
execution host, and launches any staged executable from inside that direc-
tory. Thus, since we know where the executable will be launched from,
and because we know all files will be staged to this same directory, we
can write a small wrapper script that will launch our main executable. All
this script will have to do is launch the executable specified in the JobDe-
scription object, and pass on any arguments it receives to the executable it
launches. We can then do a one-hop stage of the executable, and dynam-
ically generate this script to send to the execution host. Figures 5 shows
a job description file that would require the use of such a wrapper, and
figure 6 shows the generated wrapper.

4.3 Current Status and the Future

Currently the GridWay scheduler interface is installed and running on
ugdev08, and is getting information about its resources from the testbed
registry, ugdev05. It can run jobs that stage in and out an arbitrary number
of files using one-hop staging, and can even stream output back from the
jobs. Despite these successes there are a number of issues that should be
dealt with in the future.

13

4.3.1 Proxy Management

The stock GridWay scheduler adapter requires that a user manually ini-
tialize a proxy on the metascheduling machine. A simple workaround
was to copy a delegated proxy to the default location for a user proxy,
/tmp, which GridWay could then use. There is a minor security issue
with this solution when more than one grid user is mapped to the same
user account, but this should not be done anyway. For now, a GridWay
administrator should ensure that there no user account is mapped to more
than one grid user.

4.3.2 Rank and requirements

Specifying rank and requirements for a Globus submitted to a GridWay
metascheduler is not yet supported with the scheduler adapter. This should
be easy to implement however, as GridWay job template files have a very
simple syntax for their specification. The XML syntax for rank and require-
ments must be considered carefully however, especially if the metasched-
uler is to be considered a modular component, that is, we expect that at
some point in the future a superior metascheduler shall be created that we
might like to switch to. This new metascheduler may use a different syn-
tax from GridWay for specifying rank and requirements, in the same way
that Condor has a different syntax from GridWay.

As a solution, it would be best to make use of the strengths of XML and
describe rank and requirements semantically. An example solution could
have a root tag named rank , with subtags like CPUSpeed, freeRAM and
operatingSystem . This would make interpretation of the XML data
into different formats simple for different scheduler adapters. It is future-
proof as well, as these values are likely to be important to any metasched-
uler, and are not tied to a specific implementation.

4.3.3 Integration with Registry

Currently, GridWay gets metadata about grid resources from the default
GRAM information providers included with a Globus install. While these
information providers do provide a minimal amount of information about
the grid resources they describe, they do not provide nearly as much infor-
mation as is provided by the GLUE Schema[8], nor the extended GridX1

14

Schema[9]. Adding an information driver that can interpret the GridX1
Schema should not be particularly difficult, as there is already example
source code included with GridWay for gathering monitoring information
from stock MDS4 Registries and the LDAP mapping of the GLUE schema
(MDS2) as well.

5 Conclusion

Choosing the proper metascheduling solution for a Web services com-
putational grid will be a difficult task. There are a number of benefits
and disadvantages to both the Condor-G metascheduling system and the
GridWay-based system. Overcoming the disadvantages to both solutions
is one of the tasks that need completion in the next few months of the CA-
NARIE project. The author is confident that overcoming these obstacles
will be accomplished without much difficulty by the team at

References

[1] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris,
D. Orchard. “Web Services Architecture.” 11 February 2004.

[2] Foster, I. “A Globus Primer.” 8 May 2005.

[3] V. Welch, I. Foster, C. Kesselman, O. Mulmo, L. Pearlman, S. Tuecke, J.
Gawor, S. Meder, F. Siebenlist. “X.509 Proxy Certificates for Dynamic
Delegation.” 2004.

[4] A. Agarwal, M. Ahmed, B. Caron, A. Dimopoulos, L. Groer, R. Haria,
R. Impey, L. Klektau, C. Lindsay, G. Mateescu, D. Quesnel, R. Sim-
monds, R. Sobie, B. St. Arnaud, D. Vanderster, M. Vetterli, R. Walker,
M. Yuen. “GridX1: A Canadian Computational Grid.”

[5] J. Frey, T. Tannenbaum, M. Livny, I. Foster, S. Tuecke. “Condor-G:
A Computation Management Agent for Multi-Institutional Grids.” 2
November, 2004.

[6] “WS-GRAM Scheduler Interface Tutorial (Perl Module).”
http://www.globus.org/toolkit/docs/4.0/.

15

[7] “GridWay 5 Documentation: User Guide”.

[8] S. Andreozzi, S. Burke, L. Field, S. Fisher, B. Konya, M. Mambelli, J.
Schopf, M. Viljoen, A. Wilson. “GLUE Schema Specification, version
1.2”. 3 December 2005.

[9] “Resource Schema Description and Definition for GridX1 Services
Project”. 9 June 2006.

16

