
Work Term Report
Marco Yuen <marcoy@csc.uvic.ca>

Table of Contents
1. Overview ... 2
2. Monitoring Scripts ... 2

2.1. Scripts in /home/gridmon/programs .. 2
2.1.1. Makemap .. 2
2.1.2. Monitor .. 3
2.1.3. Database: newgridinfo ... 3

2.2. Scripts in /home/gridmon/graphs .. 3
2.2.1. 24h, 7d, and 30d ... 3
2.2.2. Bar ... 3
2.2.3. Logger .. 3
2.2.4. LoggerLast30d ... 4
2.2.5. Pie ... 4

2.3. Other scripts ... 4
2.3.1. XmlBar ... 4
2.3.2. Portlet: Jobs Barchart .. 4
2.3.3. Portlet: Create Site Status ... 5

2.4. Subversion ... 5
3. GridX1 Website .. 5

3.1. Accessing Zope .. 5
3.1.1. Accessing Zope: Management Interface .. 6
3.1.2. Accessing Zope: FTP .. 6
3.1.3. Accessing Zope: Home Brew Solutions ... 7

3.2. The Anatomy of the GridX1 website ... 7
4. HOWTOs ... 7

4.1. HOWTO: Add A New Site .. 8
4.2. HOWTO: Add A Pie Chart ... 9
4.3. HOWTO: Display A Pie Chart ... 10
4.4. HOWTO: Abbreviate Site Names ... 11
4.5. HOWTO: Add New Tabs ... 11
4.6. HOWTO: Setup A New Page For A Condor Queue ... 12

5. Suggestion .. 12
Index .. 14

1

1. Overview
I will give a brief overview of how the monitoring system works. The whole monitoring infrastructure is
comprised of numerous scripts and a relational database running locally on gcmon01. One of the
scripts, monitor2.pl, is responsible for testing the availability of different services on various
clusters and store the results back into the local database. Other scripts will query the local database and
construct human-readable outputs. The outputs can be seen on the GridX1's website. However, not all of
the scripts query the local database at all. Some scripts query a database at CERN, some query a data-
base at TRIUMF and some don't even query any database. Most of the scripts including monitor2.pl
are run periodically by a crontab. I will go over each script in turn, and followed by multiple howtos on
maintaining the website and the monitoring scripts.

2. Monitoring Scripts
Almost the entire collection of the monitoring scripts are resided in /home/gridmon on gcmon01.
The database that has the results of the tests is running on gcmon01 as well. In some of the subdirector-
ies in /home/gridmon there is a folder called sandbox; it is where I do all the testing before rolling
out the changes by generating a patch and applying the patch to the production scripts. I strongly advise
that changes are made to the scripts in sandbox first then to the production scripts.

2.1. Scripts in /home/gridmon/programs

There are two subdirectories inside /home/gridmon/programs, makemap and monitor. I will ex-
plain what each of those scripts does in the following subsections.

2.1.1. Makemap

make_map.pl queries the local database and creates a map with color-coded dots on it. The map can
be seen on the main page of GridX1 [http://www.gridx1.ca]. Due to the fact that some sites are located
in close proximity of each other, their labels are drawn by manually specifying the coordinates. Sites
such as Victoria, Alberta, and Ottawa have multiple clusters but the map only shows one of the clusters
for each site. This problem will probably be solved in the future.

Figure 1. Map from GridX1 [http://www.gridx1.ca]

Work Term Report

2

http://www.gridx1.ca
http://www.gridx1.ca

2.1.2. Monitor

/home/gridmon/programs/monitor houses one of the most important scripts in the monitoring
infrastructure, monitor2.pl. Its main task is to connect to the clusters and determine whether the ser-
vices they are supposed to provide are, indeed, up and running. The services that monitor2.pl mon-
itors are Gatekeeper, Job Submission, and GridFTP. The results are pushed back to a database named
newgridinfo. More details on newgridinfo in the next section. A few scripts are relying on the results
gathered by monitor2.pl in order to function properly. There is a sandbox subdirectory in the /
home/gridmon/programs/monitor. The script inside sandbox does exactly the same thing as
its production counterpart except that the results are stored in a database named test instead of newgrid-
info. Both databases have the same schema but one, as the name implies, is for testing purposes. mon-
itor2.pl runs humbly every four minutes churning out the results back to newgridinfo.

2.1.3. Database: newgridinfo

The only table that is important in newgridinfo is hosts. It contains all the information related to a
cluster. This table plays a major role when there is a new site that needs to be monitored. In the later sec-
tion, I will demonstrate how to add a new site by using the hosts table. Other tables in newgridinfo are
for storing the test results in different formats. Scripts compute the results by joining one of the result
tables with the tests and hosts tables.

2.2. Scripts in /home/gridmon/graphs

There are quite a few scripts inside /home/gridmon/graphs. As you might have already guessed,
the main purpose of these scripts is to create beautiful and informative graphs that represent current or
past states of the clusters.

2.2.1. 24h, 7d, and 30d

These three scripts are becoming obsolete. They were used record the number of successful and failed
jobs in past twenty-four hours, past seven days and past thirty days respectively. The graphs that the
scripts generated would be uploaded to the GridX1's website. Even though these scripts are still being
run by the crontab, they are not being displayed on the webpage any more.

2.2.2. Bar

Yet another script that is being phased out. The bar chart created by make_bar.pl reflects the number
of the jobs being run up to four minutes ago on the clusters. The fact that make_bar.pl generates a
static JPEG every four minutes creates an inconsistency on the webpage; therefore, it is replaced by a
more dynamic script. The new script can dynamically update the graph every thirty seconds without re-
quiring the clients to refresh the webpage. If the server can handle greater load, the update time can be
shortened even more.

2.2.3. Logger

After going through all of the obsolete scripts, I can now move on to the first production script in /
home/gridmon/graphs. make_logger.pl has two outputs; one shows a histogram of finished
jobs for the past year, and the other shows a histogram of both finished and failed jobs for the past year.
The former can be seen on the monitoring webpage [http://www.gridx1.ca/monitor/atlas_logger]. The
second output requires a little manual fiddling with the URL; the graph can be seen by appending more
to the URL [http://www.gridx1.ca/monitor/atlas_logger/more].

make_logger.pl gets all the data by querying a database at CERN and it uses GD::Graph to create
two graphs named gridX1_logger.gif, and gridX1_logger_all.gif.

Work Term Report

3

http://www.gridx1.ca/monitor/atlas_logger
http://www.gridx1.ca/monitor/atlas_logger/more

2.2.4. LoggerLast30d

The second script that is currently in production is makeLogger30d.pl. Its output is similar to
make_logger.pl. However, instead of getting all the successful and failed jobs for the past year,
makeLogger30d.pl only gets the successful jobs for the past thirty days. As with
make_logger.pl, you can view the output of makeLogger30d.pl from the GridX1's webpage.

makeLogger30d.pl is an incarnation of make_logger.pl. The only two thing that are different
in terms of the implementation are the SQL query used and the parsing algorithm. Other than those two
differences, they are identical.

2.2.5. Pie

Finally, make_pie.pl is the last script in /home/gridmon/graphs. make_pie.pl is a more
site specific script. Unlike make_logger.pl and makeLogger30d.pl which treat all the clusters
as a whole, make_pie.pl treats individual site as a data source and queries each site for information.
For each site, make_pie.pl gathers the number of running jobs, number of CPUs, and number of idle
CPUs. After collecting all the required data it will create a pie chart, and it will update the corresponding
columns in hosts table of newgridinfo. All the outputs can be seen on the GridX1's website under monit-
or.

It acquires the hostnames of each site by querying the hosts table from newgridinfo. Once the hostname
is known, make_pie.pl will use globus-job-run to remotely execute two other commands qstat, and
pbsnodes on the designated site.

make_pie.pl is known to stall when the site being queried is down. The problem persists mainly be-
cause there isn't any timeout mechanism for globus-job-run. Therefore, make_pie.pl should imple-
ment a timeout whenever it tries to execute globus-job-run.

2.3. Other scripts
There are a small number of scripts that are not in /home/gridmon. Most of them are located inside
Zope. Since Zope has its own filesystem or rather its own method of storing files, there is no way to gain
direct access to the files inside. Luckily, Zope provides two ways to access the objects(files) stored with-
in. One way is to access the files via FTP, and the other way is to use the Zope management interface.

2.3.1. XmlBar

This script, xmlBar.py, can be found in /var/www/html/python on yamon. In a nutshell, this
script works exactly the same as make_pie.pl, but this is more optimized, and written in Python. The
output of xmlBar.py is XML, and the content will be parsed and displayed by another script.

Inside xmlBar.py, the function, index, is the heart of this script, because it is the function that does
all the work. First, index creates two child processes. Then it parses the output of the children. Finally,
it returns the data in XML format. The two child processes each runs two commands, condor_status
and condor_q. xmlBar.py gets the hostnames for each sites by using condor_status. With the host-
names stored in the memory, xmlBar.py uses them as parameters for condor_q. Then, it starts pars-
ing the output of condor_q, and formats the output into a valid and well-formed XML document.

The actual XML data can be viewed at http://www.gridx1.ca/~python/xmlBar.py. A web browser such
as Mozilla Suite, or FireFox should be used because they have built-in XML viewing and validating
capabilities.

2.3.2. Portlet: Jobs Barchart

With the data from xmlBar.py, there should be a way to properly display those XML data. This is

Work Term Report

4

1 Information about accessing Zope can be found at Section 3.1, “Accessing Zope”.

where portlet_jobs_barchart comes into play. Unlike other scripts port-
let_jobs_barchart doesn't reside on any local filesystems but inside Zope. port-
let_jobs_barchart is located at /gridX1/portal_skins/custom1 inside the Zope filesys-
tem. Its main task is to create the bar chart on the top right of the GridX1 website based on the data
gathered by xmlBar.py.

portlet_jobs_barchart is mostly written in javascript. It constructs a DOM tree on the fly, and
the browser will render that DOM tree and create a bar chart. Due to the fact that the DOM tree is cre-
ated on the fly, it can be updated automatically without users intervention. In other words, users don't
have to refresh the webpage to get the latest information; they only need to leave the webpage on the
screen and the bar chart will update itself.

One drawback for portlet_jobs_barchart, I think, is the complexity. I manually construct a
DOM tree with <table> as the root element. While this method gives me the power to do whatever I see
fit, but it stifles extensibility and increases complexity. Adding a column to the table or adding a <td>
element to the DOM tree means a lot of manual fiddling with the javascript code. A better way to do this
is to use XSLT and transform the XML from xmlBar.py to SVG. One problem it poses is that not all
browsers out in the market have built-in SVG support. However, in a long run, XSLT can provide a
cleaner and more extensible solution.

2.3.3. Portlet: Create Site Status

Another script that resides in the Zope filesystem is create_site_status. The result of this script
can be seen on the bottom right of the GridX1's website; it shows the current status each clusters, and it
is located at /gridX1 on the Zope filesystem.

create_site_status queries the database for the status of each cluster. Based on the result of the
query, create_site_status assigns different colors for each cluster. With Red being at least one
of the services is down for that cluster, and Green being all of the services for that cluster are working as
expected.

2.4. Subversion
All of the scripts aforementioned are under revision by Subversion. However, not all of the scripts in /
home/gridmon are under revision , and even the scripts that are under revision, they were only added
to Subversion recently. So, the full history of the scripts is not recorded in the repository. The commands
for Subversion are very similar to those in CVS with some extensions, and Subversion is more capable
than CVS in terms of functionality, security, and availability. Subversion set out to be a replacement of
CVS, and I think they have already exceeded their goal.

I will give a quick rundown on how to use Subversion. A Subversion command often has form svn
<svn-command>. To find a list of available Subversion command, one can type svn help in the
terminal. Or, to get help for a specific command, use svn help <svn-command>. Common com-
mands such as checkout, update, diff, and commit have the same meaning as their counterpart in CVS.

3. GridX1 Website
Most of the scripts mentioned in Section 2, “Monitoring Scripts” upload their results to GridX1
[http://www.gridx1.ca]. The website users Plone as the back-end, so content can be updated or added
with ease. Internally, Plone relies on Zope as the application server. Both Zope, and Plone are written
entirely in Python.

3.1. Accessing Zope

Work Term Report

5

http://www.gridx1.ca

As I mentioned before in Section 2.3, “Other scripts”, there are two main ways to gain access to the Zo-
pe filesystem. First, one can access the filesystem via the Zope's management interface. Second, one can
FTP in the Zope. Actually, there is another way to do it but that requires some knowledge of ZODB and
Python.

3.1.1. Accessing Zope: Management Interface

The Zope management interface is the de facto way to access Zope's filesystem. To access the interface:

Procedure 1. Accessing through Web browser

1. Fire up your favorite web browser.

2. Type http://yamon.phys.uvic.ca:8080/manage in the location bar.

3. Type in your username and password.

4. You are in!

Once inside the management interface, the left side is the navigation frame.

The navigation frame allows users to traverse the entire Zope file structure in an intuitive and graphical
manner. The management interface provides a set of comprehensive operations for users to operate on
the content inside. Users can add, move, copy, delete, and etc... The entire GridX1 website is under /
gridX1. The management interface can be quite inconvenient when operating on large number of files
or doing multiple operations on the same file. Nonetheless, it is an indispensable tool.

3.1.2. Accessing Zope: FTP

Work Term Report

6

Another way to access the content of Zope is to use FTP. Most of the scripts in Section 2, “Monitoring
Scripts”, use FTP to upload the images to the website.

Procedure 2. Accessing through FTP

1. Fire up your favorite FTP client.

2. Connect to http://yamon.phys.uvic.ca:8021.

3. Type in your username and password

Warning

Zope makes heavy use of metadata to distinguish types of files or Zope Objects in Zope par-
lance. FTP access does NOT provide the ability to upload or download metadata that belong to
a Zope Object. So files uploaded to zope via FTP should only restrict to files with well-known
extensions (eg. GIF, JPEG, HTML, XHTML, XML, etc...)

3.1.3. Accessing Zope: Home Brew Solutions

The third way to accessing the Zope filesystem is to create your own program and talk directly to
ZODB. Zope uses ZODB exclusively to store all the data. ZODB is an object oriented database and,
similar to Zope, it is written in Python. ZODB has its own API, and Python is an easy, clean, and power-
ful language (WAY better than using perl).

3.2. The Anatomy of the GridX1 website
The directory structure of the /gridX1 may look intimidating at first. However, only a handful of dir-
ectories are important. First, there is /gridX1/portal_skins/custom. That is the place where all
the custom CSS, portlets, and templates go. Second, /gridX1/portal_actions is where the tabs
and subtabs are defined. Finally, /gridX1/monitor contains all of the images and HTML pages re-
lated to the monitoring section.

4. HOWTOs
After introducing most of the scripts related to the monitoring infrastructure, I will move on to introdu-
cing some of the common operations required for maintaining the scripts and the website. Generally, the
whole monitoring infrastructure requires little maintenance, but occasionally something unexpected may
emerge.

In this collection of HOWTOs you will learn:

• How To Add A New Site

• How To Add A Pie Chart

• How To Display A Pie Chart

• How To Abbreviate Site Names

• How To Add New Tabs

Work Term Report

7

• How To Setup A New Page For A Condor Queue

4.1. HOWTO: Add A New Site
In Figure 1, “Map from GridX1”, two sites are labeled as future sites - Montreal and Toronto. There
may be a need to include them as part of the monitoring infrastructure. Adding a new site to the infra-
structure is not as trivial as it sounds, as it requires multiple prerequisites in place. The first thing to do is
to make sure their required services are up and running. The monitoring scripts will need to run some
commands on the remote site; therefore, a running GateKeeper, Broker, and GridFTP server is essential
in order for the scripts to work properly. Then, make sure Dan's subject is on the remote site's gridmap
file; that will give the scripts privileges to run jobs on the remote site, since all of the jobs are running
with Dan as the owner. With the services up and running and Dan's subject in place, the remote host's in-
formation needs to be inserted into the hosts table of newgridinfo. A close look at the schema for hosts;
there are ten fields in the table, and that is all the information required.

mysql> describe hosts;
+--------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------------+-------------+------+-----+---------+-------+
host_id	int(11)		PRI	0	
hostname	varchar(50)	YES		NULL	
admin	varchar(50)	YES		NULL	
ip	varchar(20)	YES		NULL	
TotalCPUs	int(11)			0	
ActiveCPUs	int(11)			0	
NumGridCPUs	int(11)			0	
TotalJobs	int(11)			0	
NumGridJobs	int(11)			0	
NumLocalJobs	int(11)			0	
+--------------+-------------+------+-----+---------+-------+
10 rows in set (0.02 sec)

Even though there are ten fields, a couple of the fields are especially important, and their values must be
correct. First, host_id must be unique and of the value MAX(host_id) + 1. Second, the hostname must be
a valid hostname, because some of the scripts mentioned in Section 2, “Monitoring Scripts” query spe-
cifically for this field. If for some reason, this field is incorrect, the scripts will not gather any statistics
for the designated site. Finally, the ip field of hosts is the corresponding ip address of the hostname field.
The ip address can simply be acquired by typing host <hostname> in the terminal. The information
for the remaining fields can be found by inquiring the administrator of the remote site, or by reading the
ClassAd. Now that everything is in place, a quick test with monitor2.pl should indicate whether the
site is successfully added or not.

Note

There is usually a wrapper script associated with each monitoring script. Remember to run the
wrapper script instead, because it sets environment variables that are needed for the monitoring
script. The wrapper scripts are written in BASH, and they usually just execute the actual monit-
oring script after setting the needed environment variables.

If it is successful, the output of monitor2.pl should look something like the following with the host-
name replaced with the newly added hostname.

--venus.sao.nrc.ca--
/opt/vdt/globus/bin/globusrun -a -r venus.sao.nrc.ca

Work Term Report

8

GRAM Authentication test successful
Gatekeeper: Pass
/opt/vdt/globus/bin/globusrun -o -r venus.sao.nrc.ca/jobmanager-fork \
"&(executable=/bin/echo)(arguments=jobtest)" jobtest

Job Submission: Pass
/opt/vdt/globus/bin/globus-url-copy -vb \
file:///tmp/gridftp.test2 \
gsiftp://venus.sao.nrc.ca/tmp/gridftp.test2

14 bytes 0.01 KB/sec avg 0.01 KB/sec inst
/opt/vdt/globus/bin/globus-url-copy -vb \
gsiftp://venus.sao.nrc.ca/tmp/gridftp.test2 \
file:///tmp/gridftp.test2

cat /tmp/gridftp.test2
gridftp.test2
GridFTP: Pass

4.2. HOWTO: Add A Pie Chart
In Section 2.2.5, “Pie”, make_pie.pl generates a site specific pie chart. However, in order for it to
generate a pie chart with the current states of the new site, it has to know the path, on the remote site, of
the two executables qstat and pbsnodes. To find out the path requires access to the remote site, usually
Askhok or Dan will have access to the new site. The script needs to know the new information, so use
your favorite editor and open up make_pie.pl. Look for the follow line.

my @names = ("mercury.uvic.ca", "thuner-gw.phys.ualberta.ca",
"mercury.sao.nrc.ca", "calliope.phys.uvic.ca", "thuner-grid.nic.ualberta.ca",
"hep.westgrid.ca", "venus.sao.nrc.ca");

Once it is located, add the hostname of the new site to @names array. After that, scroll towards the end
until you reach:

my %qstatpath = (
'mercury.uvic.ca'=>"/usr/local/pbs/bin",
'thuner-gw.phys.ualberta.ca'=>"/usr/local/bin",
'mercury.sao.nrc.ca'=>"/usr/pbs/bin",
'calliope.phys.uvic.ca'=>"/usr/pbs/bin",
'thuner-grid.nic.ualberta.ca'=>"/opt/local/bin",
'hep.westgrid.ca'=>"/opt/globus/lib/perl/Globus/GRAM/JobManager",
'venus.sao.nrc.ca'=>"/usr/pbs/bin");

my %pbsnodespath = (
'mercury.uvic.ca'=>"/usr/local/pbs/bin",
'thuner-gw.phys.ualberta.ca'=>"/usr/local/bin",
'mercury.sao.nrc.ca'=>"/usr/pbs/bin",
'calliope.phys.uvic.ca'=>"/usr/pbs/bin",
'thuner-grid.nic.ualberta.ca'=>"/opt/local/bin",
'hep.westgrid.ca'=>"/global/software/torque-1.2.0p2/bin",
'venus.sao.nrc.ca'=>"/usr/pbs/bin");

my %Number_Grid_CPUs = (
'mercury.uvic.ca'=>100,
'thuner-gw.phys.ualberta.ca'=>32,
'mercury.sao.nrc.ca'=>24,
'calliope.phys.uvic.ca'=>50,
'thuner-grid.nic.ualberta.ca'=>32,
'hep.westgrid.ca'=>998,
'venus.sao.nrc.ca'=>68);

Work Term Report

9

2Steps to connect to Zope management interface can be found in Section 3.1.1, “Accessing Zope: Management Interface”

Add the paths to of qstat, and pbsnodes to %qstatpath, and %pbsnodepath respectively. Finally,
add the number of the CPUs to %Number_Grid_CPUs.

It's always a good idea to make sure make_pie.pl is still working. Excute the wrapper script and see
if the output looks like the following:

Checking qstat on mercury.uvic.ca...
Checking pbsnodes on mercury.uvic.ca...
success, 9 Jobs, 8 Local, 1 Grid, 110 Active CPUs, 112 Total CPUs

Again, the hostname should be the hostname of the new site instead of mercury.uvic.ca.

4.3. HOWTO: Display A Pie Chart
A new pie chart is generated by make_pie.pl, but it is nowhere to be found! So, we need to add
something the GridX1's website such that there is a link to the new pie chart. First, connect to the Zope
management interface2, then browse to /gridX1/monitor. Inside /gridX1/monitor, there are
multiple directories with names same as the hostnames. As you may expect, we need to add a new dir-
ectory with a name same as the new site's hostname. To add a new directory, choose "Plone Content"
from the drop list on the right.

A new page will come and this time, type in the hostname in the textbox

A newly created directory should be present in /gridX1/monitor. Now, we need to copy some files
from one of the existing host directories to the newly created one. Pick an existing directory, and check
the following six files.

Work Term Report

10

Then, click “Copy” on the bottom. After that, go back to /gridX1/monitor (the parent), and click
on the new directory, then click paste located at the bottom. The required files are now copied over to
the new directory, however, the hostname inside the files are hard-coded. So we need to change the host-
name for each of the file. Please refer to the Zope manual on how to edit files inside the management in-
terface.

4.4. HOWTO: Abbreviate Site Names
The names show up on the portlets are being shortened. If a new site shows, those portlets do not know
how to shorten them. For create_site_status, if there is a new site, create_site_status
will simply display the hostname of that new site, and for portlet_jobs_barchart, it will display
undefined. Fortunately, this is a simple problem to fix. Since both of these scripts are inside the Zope
filesystem, the first thing to do to fix the problem is to go the Zope management interface. The fix for
create_site_status is to add the hostname to the sitesMap dictionary.

sitesMap = {}
sitesMap['mercury.sao.nrc.ca'] = 'NRC-Mercury'
sitesMap['mercury.uvic.ca'] = 'Victoria-Mercury'
sitesMap['thuner-gw.phys.ualberta.ca'] = 'Alberta-Thor'
sitesMap['thuner-grid.nic.ualberta.ca'] = 'Alberta-Thor-grid'
sitesMap['calliope.phys.uvic.ca'] = 'Victoria-Muse'
sitesMap['hep.westgrid.ca'] = 'Vancouver-Westgrid'
sitesMap['venus.sao.nrc.ca'] = 'NRC-Venus'

The same solution applies to portlet_jobs_barchart as well. Simply add the new hostname to
the sitesMap dictionary, but this time it's in JavaScript.

4.5. HOWTO: Add New Tabs
If a new section is needed to onto the webpage, creating a new tab for that section is the best way to go.
To add new tabs to website, first go to the Zope management interface. Once inside the management in-
terface, go to /gridX1/portal_actions. Scroll all the way to the end of the page and there are a
couple textboxes, simply fill in the required info like the following.

Work Term Report

11

Click “Save” and that should create a new tab on the webpage. However, if you want to create a subtab,
you need to fill in the same information except for Category. Instead of putting portal_tabs in Category,
you need to put portaltab-<parentid>, and it will create a subtab underneath parent.

4.6. HOWTO: Setup A New Page For A Condor Queue
In order to create a page that displays jobs currently queued in a condor queue, you need to go the /
opt/Zope-2.7/Extensions on yamon. Inside /opt/Zope-2.7/Extensions there is a file
called condorg_q.pl. Simply open it with you favorite editor and find this line.

open (CONDORQ, "/opt/condor-6.6.6/bin/condor_q -name lcgce02.triumf.ca
-pool lcgce02.triumf.ca -l|");

Change the arguments for -name and -pool to the new hostname. The most important step is finished,
the only thing left to do is to duplicate some files under /gridX1/monitor, and add a new subtab. I
will leave that as an exercise.

5. Suggestion
My first suggestion is to STOP using perl. There are other alternatives out there the can do exactly same
thing, if not better, but without the arcane syntax and semantics. This section mostly consists of quotes
from people who share the same feelings with me towards Perl.

Frankly, I'd rather not try to compete with Perl in the areas where Perl is best -- it's a
battle that's impossible to win, and I don't think it is a good idea to strive for the num-
ber of obscure options and shortcuts that Perl has acquired through the years.

— Guido van Rossum

[Perl] combines all the worst aspects of C and Lisp: a billion different sublanguages in
one monolithic executable. It combines the power of C with the readability of Post-
Script.

—Jamie Zawinski

Work Term Report

12

It's not that perl programmers are idiots, it's that the language rewards idiotic behavior
in a way that no other language or tool has ever done.

—Erik Naggum

The ultimate laziness is not using Perl. That saves you so much work you wouldn't be-
lieve it if you had never tried it.

—Erik Naggum

...but I guess there are some things that are so gross you just have to forget, or it'll des-
troy something within you. perl is the first such thing I have known.

—Erik Naggum

Like I said, it’s a pop culture. A commercial hit record for teenagers doesn’t have to
have any particular musical merits. I think a lot of the success of various programming
languages is expeditious gap-filling. Perl is another example of filling a tiny, short-
term need, and then being a real problem in the longer term.

—Alan Kay

Perls OO is like MacDonalds food. Fast, cheap, and great if you aren't used to any-
thing else. Kids love it. But utterly disgusting for lovers of gourmet food.

—Abigail (Slashdot Comment)

Perl: The only language that looks the same before and after RSA encryption.
—Slashdot Comment

If you want to shoot yourself in the foot, Perl will give you ten bullets and a laser
scope, then stand by and cheer you on.

—Teodor Zlatanov

Perl is like vise grips. You can do anything with it but it is the wrong tool for every
job.

—Bruce Eckel

[Perl] is the sanctuary of dunces. The godsend for brainless coders. The means and
banner of sysadmins. The lingua franca of trial-and-error hackers. The song and dance
of stultified engineers.

—Xah Lee

Perl is worse than Python because people wanted it worse.
—Larry Wall

Work Term Report

13

Index
C
condor_q, 4
condor_status, 4

D
database

newgridinfo, 3
test, 3

E
Environment Variables, 8

G
gridmap, 8

M
monitor2.pl, 8

N
newgridinfo, 3, 4

P
perl, 12
portlets, 11

S
scripts

create_site_status, 5
make_bar.pl, 3
make_linegraphs_24h.pl, 3
make_linegraphs_30d.pl, 3
make_linegraphs_7d.pl, 3
make_logger.pl, 3
make_map.pl, 2
make_pie.pl, 4
makeLogger30d.pl, 4
monitor2.pl, 2, 3
portlet_jobs_barchart, 4
xmlBar.py, 4

subject, 8
Subversion, 5

X
XML, 4
XSLT, 5

Z
Zope's Management Interface, 6

Work Term Report

14

	Work Term Report
	Table of Contents
	1. Overview
	2. Monitoring Scripts
	2.1. Scripts in /home/gridmon/programs
	2.1.1. Makemap
	2.1.2. Monitor
	2.1.3. Database: newgridinfo

	2.2. Scripts in /home/gridmon/graphs
	2.2.1. 24h, 7d, and 30d
	2.2.2. Bar
	2.2.3. Logger
	2.2.4. LoggerLast30d
	2.2.5. Pie

	2.3. Other scripts
	2.3.1. XmlBar
	2.3.2. Portlet: Jobs Barchart
	2.3.3. Portlet: Create Site Status

	2.4. Subversion

	3. GridX1 Website
	3.1. Accessing Zope
	3.1.1. Accessing Zope: Management Interface
	3.1.2. Accessing Zope: FTP
	3.1.3. Accessing Zope: Home Brew Solutions

	3.2. The Anatomy of the GridX1 website

	4. HOWTOs
	4.1. HOWTO: Add A New Site
	4.2. HOWTO: Add A Pie Chart
	4.3. HOWTO: Display A Pie Chart
	4.4. HOWTO: Abbreviate Site Names
	4.5. HOWTO: Add New Tabs
	4.6. HOWTO: Setup A New Page For A Condor Queue

	5. Suggestion
	Index

