
1

University of Victoria
Faculty of Engineering

Department of Computer Science
Summer 2008 Work Term Report

Condor Web Services Submission of Jobs to a Computational
Grid

Department of Physics and Astronomy
University of Victoria

Victoria, BC

Sean Manning
0330705

Work Term 2
Computer Science/Mathematics

seangwm@uvic.ca

3 September 2008

In partial fulfillment of the requirements of a Bachelor of Science degree

Supervisor’s Approval: To Be Completed by the Co-Op Employer

I approve the release of this report to the University of Victoria for evaluation purposes only.
This report is to be considered (pick one): □ Confidential □ Not Confidential

Signature: _____________________ Position: ________________Date: _____________
Name (print): __________________ Email: __________________ Fax #: ____________

If the report is deemed confidential, a non-disclosure form signed by an evaluator will be faxed
to the employer. This report will be destroyed following evaluation. If the report is not
confidential, it will be returned to the student following evaluation.

mailto:seangwm@uvic.ca

2

Abstract
Grid computing is an increasingly popular solution to the growing demand of scientists

for computing power. Adding a Web Services interface to an existing grid (which uses Globus,

Condor, PBS, and Xen) offers several benefits. For example, it makes security easier to handle,

and it is easier to use than the full command-line interface. A simple interface for submitting and

monitoring was created for the HEPnet grid at UVic using the Java programming language and

the Birdbath and Condor APIs. A number of obstacles were met and overcome, including poor

documentation and the difficulties of adding new software to a production system. The interface

is successful, but it could still be improved and expanded.

3

Report Specifications
• Audience: Someone considering working with Condor Web Services in a Globus grid

environment.

• Prerequisites: The reader should have a basic familiarity with Unix concepts and with

Java or a similar programming language.

• Purpose: This report documents some of my work in summer 2008. It might be of

interest to other people working on the same or similar projects.

Table of Contents

Abstract 2
Report Specifications 3
Table of Contents 3
Introduction 3
Background: The HEPnet Grid 4
The Traditional Interface 8
The Proposed Web Services Interface 9
Challenges 10
The New Java Web Services Interface 13
Conclusions 15
Acknowledgements 16
References 17

Introduction
 Grid computing is a popular solution to the growing demand of scientists for computing

power. Rather than each project maintaining and managing enough computers to meet its needs,

the researchers can join or gain access to a network called a grid. Grid computing is especially

useful for tasks which can be done in parallel on several different machines, because individual

machines in the grid are usually not especially powerful. A grid can be expanded easily, unlike a

4

single powerful computer. Some grids use groups of dedicated machines, others (like

SETI@Home) are installed on machines with some other purpose and run when they are idle. It

is hoped that, one day, computational capacity could be distributed as easily as water or

electricity.1

 Implementing a grid faces many technical challenges. One of the humbler ones is

designing an interface which is as versatile and easy to set up as possible. A new approach using

Web Services technology offered several benefits in these areas. In fall 2007 and summer 2008,

a simple Web Services interface was developed which would let users submit jobs, retrieve

output, and monitor the status of their jobs. This interface was completed at the end of August

2008, although it could easily be expanded further.

 The Web Services interface is centered around three Java classes,

CondorJobSubmitter.java, CondorJobStatus.java, and JobHelper.java. These respectively are

used for submitting jobs, monitoring jobs and retrieving output, and providing support. They

were written by David Gong and expanded and completed by Sean Manning.

Background: The HEPnet Grid
 The Physics department's HEPnet grid is primarily used for high-energy physics

applications such as Monte Carlo simulations of events in particle accelerators. It is mainly used

by scientists at the university of Victoria, but is also shared with other institutions such as McGill

University. It is associated with the Grid X1 project, which was a pioneering Canada-wide

scientific grid.2

1 Simon Ramage. “Greater Demands on Computational Grids: Can Web Services Facilitate Global Grid
Expansion?” Work Term Report, Department of Engineering, University of Victoria, 2006, p. 1. Retrieved from
http://www.grid.phys.uvic.ca/documents/reports/reports.html in May 2008.

2 University of Victoria, “About Grid X1”. Retrieved 3 September 2008 from

http://www.grid.phys.uvic.ca/documents/reports/reports.html

5

input

Output

 Xen-based Computational Grid Implementation
(© David Gong 2007) ‏

Export to SLAC Building Run Directories

PBS Head Node

McGill Cluter
sl-gw..physics.mcgill.ca

(Globus GateKeeper +
PBS)þ

PBS Head Node

Fate UVic Cluter
calliope.phys.uvic.ca

(Globus GateKeeper +
PBS)þ

PBS Head Node

Mercury UVic Cluter

globus4.rcf.uvic.ca
(Globus GateKeeper +

PBS)þ

Central Registry

ugdev05.phys.uvic.ca

CondorG
Resource

Broker(RB)þ

babargt4.phys.uvic.ca

Metascheduler
Head Node

Grid Cluster

(Building Run
Directories

 + Merging +
Exporting)þ

SLAC
Storage
Server

bbr-xfer06.

slac.standford.edu

SLAC
Oracle

Database

babar-bugz.
slac.standford.edu

 A grid is organized on three levels. At the lowest level (or the right of the diagram above)

are worker nodes which perform the actual computation. Worker nodes are organized into

clusters, controlled by a scheduler or head node. The scheduler receives jobs, assigns them to a

machine, monitors them, and sends back the output when they are complete. As the name

suggests, the scheduler can prioritize jobs based on available resources and specific conditions

set by the user who submitted the job using a piece of software called a local resource manager.

A metascheduler allocates jobs to clusters, and is the gateway from the outside world to the

grid. It tracks the available clusters, and assigns jobs to them based upon requirements and

http://www.grid.phys.uvic.ca/index.html

http://www.grid.phys.uvic.ca/index.html

6

priorities set by the user who submitted the job. Just like a local resource manager, it can

transfer files back and forth and monitor jobs. The software package which does this is also

called a metascheduler.

 Four software packages are especially important for the HEPnet grid. Globus, Condor,

PBS, and Xen provide the basic framework of the grid.

 Version 4 of the Globus Toolkit has many different roles. It is an open-source project

managed by the Globus Alliance. It consists of many modules designed to help users to share

computing power. It provides important capabilities such as security and file staging to

supplement the versions provided by Condor. The Web Services interface makes use of several

libraries written for Globus by the Globus Alliance, and the Web Services concept is widely

supported in Globus. It serves as the backbone to the HEPnet grid.

 One feature of Globus is the gsiftp network protocol, also known as GridFTP. This is

used to transfer files securely inside the grid, or between the grid and client machines. It uses the

security features built into Globus (GSI or Grid Security Infrastructure) to communicate over a

variant of the FTP protocol. When a user submits a job to the grid using the Globus client, input

is transfered to the grid and output is transfered back using gsiftp.

 Condor can serve as a metascheduler (Condor-G) or a local resource manager. It is free

software from the University of Wisconsin-Maddison which was originally developed to apply

unused CPU time to scientific projects. On a Linux system, it receives commands from and

sends output to the terminal. A job is submitted to Condor as a submit description file in JDL

(Job Description Language) format. Each file consists of attribute-value pairs defining things

such as which executable to use and what requirements a machine must meet to run the job. It

uses files called ClassAds to describe resources and requests for resources, and performs an

7

operation called matching to match resources to requests. The main application programming

interfaces (APIs) for the Web Services interface are provided by Condor. In the HEPnet grid it is

mainly used as the metascheduler.

 The Portable Batch System (PBS) is designed as a scheduler or local resource manager.3

It is used on many HEPnet clusters. Like Condor, it can be used independently or used in a grid.

The Web Services interface never interacts with PBS directly, but it is sometimes used to check

whether a job submitted by Web Services has been assigned a machine to run on.

 Xen helps the grid support applications with specific Operating System requirements.

Many scientific applications are only compatible with very specific operating system types and

versions. Other applications are large enough that submitting a copy of the program with each

job is inefficient. Xen lets a computer run any of several virtual machines complete with an

operating system, file system, and installed software. It is normally installed on the worker

nodes. The basic Web Services interface does not interact with it at present, but the final version

will have to be able to submit and manage jobs which use Xen.

Background: What are Web Services?

 The World Wide Web Consortium states that “a Web service is a software system

designed to support interoperable machine-to-machine interaction over a network. It has an

interface described in a machine-processable format (specifically WSDL [Web Services

Description Language]). Other systems interact with the Web Service in a manner prescribed by

its description using SOAP-messages, typically conveyed using HTTP with an XML serialization

in conjunction with other Web-related standards.”4 That is to say, a web service operates on one

3 See “An Introduction ro Portable Batch System” for an overview. Corbatto, M. “An Introduction to Portable
Batch System.” Retrieved 1 September 2008 from http://hpc.sissa.it/pbs/pbs.html
4 World Wide Web Consortium (W3C), “Web Services Glossary.” Retrieved on 1 September 2008 from

http://hpc.sissa.it/pbs/pbs.html
http://hpc.sissa.it/pbs/pbs.html

8

machine but interacts with others using XML messages over the HTTP protocol (a combination

known as SOAP). SOAP uses widely supported file formats, and a safe and universally

supported network protocol, to maximize the situations in which it can be used. For example, it

is easy for applications running on two different operating systems to communicate over SOAP.

They do not have to weaken their security by allowing a new type of access to their system, as

long as they have HTTP enabled. A Web Services application might be accessed online, or

through an application installed on the user's machine, but its interface is described in WSDL and

it communicates with other systems using SOAP.

The Traditional Interface
 Without Web Services, jobs can be submitted to the HEPnet grid in two ways. Both have

their advantages, but also have some deficiencies compared to a Web Services approach.

 One approach bypasses Globus and uses knowledge of the implementation of the HEPnet

grid. First the user must log in to the metascheduler. The next step is to get permission to use

the grid by generating a proxy certficate using the grid-proxy-init command. This gives the

user permission to submit jobs for a set period by entering their username and password once.

The user submits a job to Condor by using the condor_submit command on the command line.

The job passes from the metascheduler to the head node of a cluster to a worker nodes of the

cluster, and runs there. Output is returned using Condor. The job can be monitored on the

metascheduler with the condor_q command or on the cluster with whatever command is

appropriate to the local resource manager. This approach is simple, but limited in its

applicability. It requires users to log into a metascheduler (which is both a bottleneck, and too

important to allow just anyone to have access to). It also prevents administrators from using

http://www.w3.org/TR/ws-gloss/

http://www.w3.org/TR/ws-gloss/

9

Globus-related tools to monitor the job.

 Another approach uses the Globus interface and ignores the internal implementation of

the grid. The user submits a job to Globus by logging in to a machine with the Globus client

installed, creating a proxy certficiate with grid-proxy-init, and using the globusrun-ws command

on the command line. The job passes from the client machine to the metascheduler, from the

metascheduler to the head node of a cluster, from the head node to a worker node, and runs there.

Output is returned to the client via the metascheduler. The job can be monitored using the

globus-job-status command from the client machine, or by querying the metascheduler or local

resource manager on their respective macines. Because the Globus client can be installed on any

machine, jobs can be submitted from outside the grid. This is a better approach, but it has one

disadvantage. Users need access to their original machine if they wish to monitor the job.

The Proposed Web Services Interface
 Web Services makes it even easier to submit jobs to the grid. In this approach, the user

executes a Java program on his or her machine, creates a proxy certificate, and submits the job

using the Java program. The job passes from the client machine to the metascheduler over a

gsiftp connection, is assigned and passed to a cluster by the metascheduler, is assigned to a

worker node by the head node of a cluster, and runs on the worker node. Output then passes

back up to the metascheduler, and from the metascheduler to the client. The process of

transferring files between machines is known as input and output staging. The only connection

between the client machine and the grid is the one created when the Java program first runs

between the client and the metascheduler.

 A Web Services approach offers several advantages. It simplifies the powerful but

complex command-line interface. Ideally, jobs could be monitored over the Internet, so a

10

researcher would not even be tied to the machine from which he submitted his job. A Web

Services interface is easy to expand, because every aspect uses the same format to communicate.

This is a very important advantage as grids get larger and more complex, involving more

different pieces of software which need to communicate with each other. Only a few ports need

to be opened to create the interface, so joining the grid is unlikely to conflict with a local security

policy.

Challenges
 It was decided to develop the interface in Java, since there was a variety of code available

in this language to help build Condor and Globus Web Services. Especially important APIs were

the Condor and Birdbath packages from the University of Wisconsin-Madison. The cog-jglobus

library developed by the Globus Alliance was also useful.5 About twenty different libraries were

needed in all, from a variety of different sources.

 The interface was written in Java 1.5. I inherited a version written by David Gong, which

had been running and failing on a Windows machine. I carefully documented the code,

improved the design, and got the interface to work on several Linux machines. I also added

functionality such as the ability to submit any submit description file (not just one hard-coded

one) and the ability to automatically retrieve output.

 Implementing the Web Services interface was not an easy task. The available APIs are

designed for Condor working alone, not as the metascheduler for a Globus grid. Errors often

occur deep inside imported libraries which are not documented well enough to understand the

errors. One exception produced a stack trace sixty levels deep! A trial-and-error approach to

problems was often necessary to solve them, where a solution could be found without

5 This library is documented in a wiki by the Globus Alliance, “CoG JGlobus”. Retrieved 5 September 2008 from

http://dev.globus.org/wiki/CoG_jglobus

http://dev.globus.org/wiki/CoG_jglobus

11

understanding why it worked. This is somewhat different from the more mathematical approach

usually used for stand-alone programs, where problems are solved by precisely locating the

problem and then understanding its cause.

 The first step was to document the code, which was almost un-documented. This was

helpful for me to understand it, and for future programmers who might work with the code. I

created a systematic set of comments including a Javadoc description for every class and

method.6 Some changes had been made to the Birdbath and Condor libraries, and I documented

these changes so that it would be clear what was new. At the same time I looked for places

where the program could be improved according to good software engineering principles. Some

methods were redundant, code was duplicated in other places, and other methods could be made

more useful and generic.

 The next step was getting the code to run on a Linux machine. David had not been

successful with this, because he normally programmed on a Windows XP machine. Difficulties

included importing the correct libraries, finding and changing all references in the code to a

Windows filesystem or David's user account, and identifying which classes needed to work and

which could be ignored. There were about a dozen half-written classes which had never been

able to compile, but which distracted attention from the classes which needed to compile.

 One early problem occurred when I submitted jobs. They consistently failed with the

message HoldReason = "Failed to get expiration time of proxy." It turned out that files were

being staged to the metascheduler with the wrong ownership and permissions. The copies of

files on the metascheduler initially belonged to the user who was running Condor (“root”) not the

6 JavaDocs are a form of in-line comments which can be used to generate a plain HTML web page describing the

interface to a class. This makes it easy to share and update documentation. The official Java documentation at
http://java.sun.com/reference/api/ is in Javadoc format

http://java.sun.com/reference/api/

12

user who submitted the job. This caused the proxy certificate to be considered invalid, because

they were required to belong to the user who had created them to stop someone simply copying

another user's certificate into their own account.

 To solve this problem I wrote a Perl script to change the owner of these files and the

folder they were in to the user who had submitted the job. Just changing the owner of the proxy

certificate was not sufficient. The script had to be able to find the correct owner to give the

folder to. The Perl script solved this problem by querying the Condor Quill database for current

jobs, taking the owner and job number of each, and using this information to find the correct

folder and change its owner. The Perl script was executed every minute by the Unix cron utility.

Later, we discovered that changing the permissions on this folder was necessary to allow jobs to

be submitted in close succession without failing with HoldReason = "Globus error: Invalid file

permissions on executable”. The Perl script was edited to make these additional changes.

 CondorJobSubmitter.java was not parsing JDLs correctly. It required that the JDL be

written in a slightly different format, and it refused to interpret values like “TRUE” and “false”

as booleans. The parsing turned out to be done by a class for which neither the source code nor

good documentation was available. Since it was not possible to solve the problem by studying or

changing the code which was doing the parsing, I changed how I called the parser and added

some code to treat “true” and “false” in any mix of uppercase and lowercase letters as of boolean

type.

 There were also some challgenges to do with working with a complicated, working

system. For example, when jobs kept failing with HoldReason = "Failed to create proxy

delegation" it turned out that my permission to create proxy certificates had expired. The

problem was with the wider system, not with the Java code. In another situation, I noticed that

13

new output and error files were not being staged back from the metascheduler to the client. It

turned out that the job was appearing as Completed before these files had finished staging back

from the cluster to the metascheduler. When I retrieved the output immediately, these files were

not being copied because they had not finished arriving on the metascheduler. I solved this

problem by waiting a minute before retrieving the files. The problem was a discrepancy between

how I thought the system worked, and how it actually did. Because there were so many places

where something could go wrong, tracking down the source of a problem required systematic

testing. Understanding an aspect of the grid usually required asking several people or consulting

several references, because knowledge was not concentrated in one place. It would be useful to

improve the HEPnet TWiki as either a central source of information, or a reference to what can

be found where.

The New Java Web Services Interface
 By the end of August, the interface was complete. It allows users to submit jobs, retrieve

output, and monitor ongoing jobs by executing one of two different Java classes on their

machines. The program could be run either through an integrated development environment

such as Eclipse, or as a simple executable Jar file.7 The code written for this project consists of

three classes, CondorJobSubmitter, CondorJobStatus, and CondorJobHelper.8 They are

described below.9

 The condorwsgui.CondorJobSubmitter.java handles job submission, although it can also

retrieve output from completed jobs using CondorJobStatus. It is a fairly complex class, but

7 A jar file is a variant of a standard Unix Tar or Windows Zip file
8 David wrote outlines of a dozen other classes, but they were left incomplete and were not incorporated into the

current version of the code.
9 For a more detailed references, see the source code or my file WebServicesDocumentation/README.txt.

Documentation in Javadoc format, and the soruce code, are also available.

14

crucial methods include submitFromFile (), which takes the full path to a submit description file

and uses that file to submit a job to the grid, wantNewProxy (), which creates a window to learn

whether or not the user wants to create a new proxy certificate or use an existing one, and

proxyInitGui (), which creates a window allowing the user to enter his password and create the

new proxy certificate. It has an inner class, JobWatcher, which handles waiting for the job to

complete and retrieving output when it is done. It prints test output to the terminal, but uses

arguments or pop-up windows to receive input and give the user information. Its main () method

simply takes the location of a submit description file as an argument, submits a single job based

upon that file, and tries to retrieve its output when it completes.

 The birdbath.CondorJobStatus.java class allows users to monitor jobs and retrieve their

output. It is similar in complexity to CondorJobSubmitter. The printJobStatus () method is used

to print out information on all jobs belonging to the current user, and the retrieveJob () method

retrieves output from a particular job. The AutoUpdate inner class handles getting current

information about the jobs in the queue and (optionally) retrieving output when they complete.

CondorJobStatus prints all output to the terminal, and takes no input. Its main () method starts to

get current information about the jobs in the queue (and to retrieve the output if they are

completed) every few seconds, prints status information with printJobStatus (), and stops

updating the information about jobs in the queue.

 The birdbath.JobHelper class provides supporting methods. It is inserted inside the

University of Wisconsin-Maddison Birdbath library so it can access protected methods and

variables of that library. Two methods of JobHelper are the most important. One is

getJobAttrFromJDL () which takes a file in plain text format, parses it, and returns a list of

(name, type, value) triples which represent attributes of the JDL file. The other is technically

15

two methods, getStageInFiles () and getStageInFilesVector (). It returns the names of the files to

be staged in (transfered from the client to the metascheduler) as either an array or a vector of

Strings.

Conclusions
 The Web Services interface now has had all the basic functionality it needs. I can

submit jobs from three different accounts on two different machines, see them Run and

Complete, and get the output back. I can also monitor the status of jobs on the same machines

and accounts. I had created instructions for installing and using the code, and two co-workers

had studied them and confirmed that they were clear. I have submitted a moderate number of

jobs in close succession and seen most of them complete successfully.10 This suggests that the

new interface is robust enough to handle large numbers of jobs.

 Although a basic Web Services interface has been successfully implemented, there are

ways it could be expanded and improved. Possible major improvements include:

• Users often need to submit a batch of very similar jobs, such as repeating the same

simulation with different parameters. Right now, CondorJobSubmitter.java is only

designed to submit one job at a time, and for each job the user must interact with the

Graphical User Interface. It could be automated to submit a series of jobs with some

changes.

• At present, every file associated with the job is retrieved to the user’s home directory. It

would be useful to be able to choose which files to stage back, and where to put them.

Traditional Condor supports this, but there are some difficulties doing it in Web Services.

• An interface to monitor jobs online could be added using the PHP programming

10 To be precise, seven of nine jobs were successful when I submitted them two minutes apart.

16

language. Condor has added support for this in a recent release.

Acknowledgements
 I would like to thank my supervisors, Dr. Ashok Agarwal and Dr. Randall Sobie, the

system administrator, Howard Peng, and my co-workers, including Ron Desmerais, Patrick

Armstrong, David Grundy, Greg King, and Ian Gable, for their kind help and support this

summer. David Gong, who started this project as a co-op student in 2007, was generous with his

time in helping me over email.

17

References

Agarwal, Ashok, et al. “Babar MC Production on the Computational Grid Using A Web Services
Approach,” Journal of Physics: Conference Series 119 (2008 CE) 072002

Corbatto, M. “An Introduction to Portable Batch System.” Retrieved 1 September 2008 from
http://hpc.sissa.it/pbs/pbs.html

The Globus Alliance, “The Globus Alliance.” Retrieved 1 September 2008 from
http://www.globus.org/

Gong, David. “Xen-Based Grid Computing Cluster and Condor SOAP Client”, Work Term
Report, Department of Engineering, University of Victoria, 2007. Retrieved from
http://www.grid.phys.uvic.ca/documents/reports/reports.html in May 2008.

Ramage, Simon. “Greater Demands on Computational Grids: Can Web Services Facilitate
Global Grid Expansion?” Work Term Report, Department of Engineering, University of
Victoria, 2006. Retrieved from http://www.grid.phys.uvic.ca/documents/reports/reports.html in
May 2008.

Sun Corporation, “Reference: API Specifications”, http://java.sun.com/reference/api/

University of Victoria, “Grid Computing”. Retrieved 1 September 2008 from
http://www.grid.phys.uvic.ca/index.html

University of Wisconsin-Maddison, “Condor: High Throughput Computing.” Retrieved 2
September 2008 from http://www.cs.wisc.edu/condor/

World Wide Web Consortium (W3C), “Web Services Glossary.” Retrieved on 1 September 2008
from http://www.w3.org/TR/ws-gloss/

http://hpc.sissa.it/pbs/pbs.html
http://www.globus.org/
http://www.grid.phys.uvic.ca/documents/reports/reports.html
http://www.grid.phys.uvic.ca/documents/reports/reports.html
http://java.sun.com/reference/api/
http://www.grid.phys.uvic.ca/index.html
http://www.cs.wisc.edu/condor/
http://www.w3.org/TR/ws-gloss/

	Abstract
	Report Specifications
	Table of Contents
	Introduction
	Background: The HEPnet Grid
	The Traditional Interface
	The Proposed Web Services Interface
	Challenges
	The New Java Web Services Interface
	Conclusions
	Acknowledgements
	References

