Preparing the Grid for Scientific Applications

Clay Lindsay
Department of Physics and Astronomy
University of Victoria

Physics Co-op Work Term Report

in partial fulfillment
of the requirements of the Physics Co-op Program

September 17, 2004



Abstract

Today’s high energy physics experiments are exceeding the limits of our
computational capabilities. Single computers or even clusters of processors are
insufficient for the projects physicists are undertaking. One facility can not
provide the space necessary to store the massive collections of data produced.
Worldwide collaborative efforts such as the BaBar and ATLAS projects re-
quire a worldwide collaboration of computational resources. One solution is the
grid. Analogous to the world wide web and its proficiency in communication,
the grid paradigm describes a transparent interface to computational resources.
Grid Canada, a coordinated effort to implement grid technology, has produced
GridX1, a computational grid that allows Canada’s resources to be pooled to-
gether and made available to physicists worldwide. To date GridX1 is only
able to handle applications tailored to its hardware. Lacking key components
such as data management and a transparent implementation, GridX1 is still in
its infancy. To make GridX1 into a practical platform for everyday academic
use, a set of tools must be developed. This report details the architecture of
GridX1, requirements for grid-enabling scientific applications, and the use of

tools developed throughout the term in executing applications on the grid.



Contents

1 Introduction 2
2 Discussion 3
2.1 GridX1 . .. 3
2.1.1  Architecture . . ... ... .. ... ... ... ... 3

2.1.2 Software . . . . . . ... ... 5

2.2 Requirements . . . . . .. ... Lo 6
2.2.1 Grid Requirements . . . . . . . .. ... 6

2.2.2  Application Requirements . . . . . .. .. .. .. ... .. 8

2.3 Data Management . . . . .. ... ... ... .. .. ... ... 9
2.3.1 Replica Location Service . . . . . . ... ... ... .... 10

2.3.2 Consumer RLS Interface . . . . . . ... ... ... .... 11

2.3.3 Input Data Access . . . .. ... ... ... ........ 12

2.3.4 Data Staging and Output . . . . . ... ... ... .... 12

2.4 Applications on the Grid . . . . . . . ... ... ... ... .. 13
2.5 Test Applications . . . . . . . . .. .. L o 14
2.5.1 ATLAS Data Challenge 1 . . . . ... ... ... ..... 14

2.5.2 BaBar BetaMiniApp . . . . .. . ... ... L. 16

3 Conclusion 17
4 Recommendations 17
5 Acknowledgements 18
6 Appendices 19
A ”gccp” Program 19
B 7gcfm” Program 24
C ATLAS Execution Script 27
D BaBar BetaMiniApp Script 29

List of Figures

T W N =

Basic grid structure . . . ... ..o 5
Sample RLS tables . . . . .. .. ... ... ... . 10
Success rate for each resource . . . . .. .. ... L. 15
Breakdown of failures . . . .. .. ... .. ... ... ...... 15
BaBar BetaMiniApp flowchart . . . ... ... .. ... ... .. 17



1 Introduction

The purpose of a computational grids is to provide storage and processing power
to consumers. An ideal grid is able to allocate and distribute computational re-
sources independent of the use. Similar to how an electrical power grid can
provide electricity generated in Northern Ontario to run an air conditioner in
Saskatoon, a computational grid can provide CPU time in California to a High
Energy Physics (HEP) application submitted in Switzerland. Grid computing
is undoubtedly the next step in scientific computation. New projects concep-
tualized in fields such as High Energy Physics and Bio-Informatics exceed the
practical limits of on-site computation. One notable example of the use of grid
architecture is the Large Hadron Collider Computing Grid (LCG).

The Large Hadron Collider(LHC) currently under construction in Geneva,
is undoubtedly one of the largest and most expensive scientific endeavors in
history. At a colossal 12-14 petabytes per year, the projected data output from
experiments using the LHC dwarf even some of the largest data storage facilities
in the world. Projects such as ATLAS require unprecedented computing power
to the tune of 70,000 modern processors [1]. To meet this immense challenge,
the LCG was created. LCG’s main components include databases, storage and
processors which all must be dedicated to LCG’s infrastructure. Components
are linked together via a complex software package and high speed network.
Facilities that wish to join the LCG are required to provide resources for the
soul use of the LCG. Now with an equivalent computing power of over 4,000
PC’s [2], LCG is beginning to emerge as the answer to LHC’s data challenges.
LCG is likely the largest grid project in the world, but many other groups are
making contributions to grid software and architecture.

One of Canada’s major grid efforts is Grid Canada, a partnership between

the National Research Council, CANARIE and C3.ca. Grid Canada’s main



focus is implementing grid technology and making it available to various fields
that require scientific computation. UVic’s grid research group, lead by Dr.
Randall Sobie, is a large contributor to grid software development and design.
GridX1 is Grid Canada’s current experimental computational grid. Comprised
of 3 sites nationwide, GridX1 has access to roughly 300 modern processors and
2TB of disk space. GridX1 employs a shared resources philosophy in order
to link together Canadian computational resources in a way that allows these
resources to still be used by entities outside of the grid. GridX1 is an effort
to add an extra layer of communication on top of existing network architecture
while leaving as little footprint as possible.

The goal of GridX1 is to run real applications. While existing grid and
scheduling packages are able to provide a backbone for grid operations, end
users can not be expected to know the fine details of the grid. A consumer that
wishes to use the grid needs a simple interface through which he can execute his
applications. In order to make GridX1 viable to consumers, it needs to be as
simple as submitting a job to a local cluster of computers. A grid should appear
as a cluster; the user doesn’t need to know it spans worldwide. To accomplish
this a set of tools needs to be developed for data management, submission,

installation and scheduling.

2 Discussion

2.1 GridX1
2.1.1 Architecture

GridX1 is made up of 4 main components. Figure 1 shows how the submit
machine, resource broker, high speed network and resources connect to form a

grid.



1. High Speed Network

This connects the resources of a grid together. A high speed network is
necessary to allow for the fast transfer of potentially large amounts of

data. GridX1 makes use of a light path based gigabit network.

2. Resource Broker

This portion of the grid matches jobs (instances of application execution)
to resources. Acting as a gateway to the grid, the resource broker receives
and processes all job submissions. GridX1 employs a central resource
broker design where only one broker is used for the entire grid. The central
resource broker is aware of all jobs executing on the grid, as well as the
status of each resource providing services. The broker passively receives
status reports from each resource and intelligently distributes jobs based

on factors such as wait time, free CPU’s and data location.

3. Computational Resources

These are any entity providing a service to the grid such as data stor-
age and processing power. GridX1’s computational resources consist of
the University of Victoria’s Mercury cluster, the University of Alberta’s
Thuner cluster and NRC’s Mercury cluster. Each is responsible for keep-
ing the resource broker, located in Vancouver, informed of its status. The
status of a resource includes information such as estimated wait time (for

clusters) and disk storage remaining (for storage facilities).

4. Submit Machine



This is the user’s window onto the grid. A submit machine is where a
consumer submits the parameters of his job to the resource broker. All
submit machines are connected to the resource broker via a network or
Internet connection. Normally, the information passed in submission is
small relative to the data used in application execution; a high speed
network is not necessary to connect the submit machine and resource

broker.

Figure 1: Basic grid structure

2.1.2 Software

GridX1’s existing software architecture is, more or less, two pieces of software:
The Globus Toolkit and Condorg. These two form a stable, well tested base for
a grid.

As de facto standard in grid computing software, the Globus Toolkit ac-
commodates most basic grid operations such as file transfer, authentication, job
submission and monitoring. The toolkit provides a set of binaries and an API
to the C programming language through which, with an expert knowledge of

the grid, a user can execute any grid operation.



Condor is a well known scheduling program that organizes the distribution of
jobs on clusters of computers. CondorG is an extension to Condor to the Globus
Toolkit so that it can be used as a scheduler for a grid. CondorG makes up the
base for resource brokering on GridX1. Each resources submits a “classad” to
CondorG periodically to keep the resource broker up to date in the status of
the grid.

While these pieces of software make for a solid backbone to GridX1’s struc-
ture, they lack key components that are required to run applications on the grid

in a practical manner.

2.2 Requirements

Before developing a set of tools for grid enabling scientific applications, the

requirements of the applications and the grid need to be examined.

2.2.1 Grid Requirements

A grid architecture needs to meet specific requirements in order for it to be

useful to consumers.

1. Transparency

Execution of applications on the grid should ideally be no more difficult
than submitting a job to a cluster of processors. Consumers should not
require an expert knowledge of the grid to be able to use it. Transparency
describes a grid’s ability to abstract consumers from the complicated ar-
chitecture beneath their submit machine. To make the grid a practical
tool in scientific computing, a transparent method of job submission and
application installation is required. Without transparency, a grid expert
would be required for every consumer that wished to make use of the

technology. This would be akin to requiring an electrician to plug in a



blender. This is wasted resources when the architecture could be built
with transparency in mind. GridX1 has effective methods for transpar-
ent job submission but application installation and data management still

require an intimate knowledge of the grid.

. Scalability

The ability to expand is of key importance to the grid paradigm. Scala-
bility is the ability for a grid to add resources and applications. There is
no doubt demand for computational resources is growing. To meet this
demand, a grid architecture needs to be able to add new resources seam-
lessly. GridX1 uses a software layer that sits on top of existing network
architecture. This non-invasive software approach allows groups to add
their resources to GridX1’s pool without interruptions to the resource’s

other tasks.

. Efficiency

One of the main goals of a grid architecture is to allow the efficient ex-
ecution of applications. Efficiency is important in many grid operations
like submission and data transfer; but most notably, an efficient method
of scheduling can severely impact the performance of a grid. GridX1 im-
plements a greedy method of scheduling which assigns jobs to the resource
with the lowest expected waiting time. This method does not take into
account location of data or transfer times. While the greedy method may
be acceptable, it is not the most efficient solution. A scheduler that could
employ a more sophisticated scheduling algorithm that takes into account

data location, user access and network transfer speeds is desirable.

. Security

Security is essential in any public system. GridX1 makes use of the Globus



Toolkit’s GSI authentication system to restrict resource and disc access.
Each consumer first requests a certificate, from a trusted authority, which
allows them access to grid resources. Each certificate is mapped to a user
account on each resource. GridX1’s disc access restriction relies on the
UNIX permission system which is secure and reliable. Under this system,
a consumer is only required to have his certificate in a secure location on

his submit machine. Through this, the grid is both accessible and secure.

2.2.2 Application Requirements

While it is impossible to predict how to accommodate every application that
a consumer may wish to execute on the grid, a few basic requirements, that

appear commonly in scientific applications, can be defined.

1. Installation

Installations can range from copying a single execution file to configuring a
complex tree of inter-dependant software. One of the most difficult aspects
of grid computing, installation can provide any number of problems to the
grid consumer. Often application installation and configuration requires
an administrative level of access to the system, meaning that the grid
consumer would require administration privileges to each grid resource.
This is clearly not acceptable because security would be severely compro-
mised. In addition, installation is difficult to make transparent because of
the heterogeneous nature of the grid. It’s very difficult to build a system
through which to install applications (even simple ones) that works on all
resources. Requiring system administrators to preform installations may
allow for transparency, but it violates scalability and efficiency. There’s
no guarantee that a resource administrator has the time to grid-enable all

consumer’s applications. Despite violations in scalability and efficiency,



GridX1 has administrators and grid developers preform the installations,

until a better system is developed.

2. Execution

Execution is far more simple than installation. Once correctly installed on
a resource, execution is left up to the local scheduler (if the resource is a
cluster of processors). GridX1’s three resources make use of PBS schedul-
ing software to distribute jobs throughout their clusters. This method
of execution is transparent to the user, scalable (its safe to assume any
new resources would have a similar capacity for job execution), secure and

efficient.

3. Data Management

Data is an extremely important aspect of the majority of scientific appli-
cations. Practically every application requires some form of input, and all
applications provide output. Data is most commonly stored in files or data
bases. Input data is necessary to execute the application and can either
be staged in by the consumer, or stored somewhere on the grid. Output
data needs to be made available to the consumer on completion of the job.
Data management involves the cataloging and movement of data through
the grid. GridX1 has the capability to move data quickly, but there is
no transparent way to access or store data on the resources. Without a
data management system that adheres to the grid requirements, running

applications on the grid would be impractical.

2.3 Data Management

GridX1’s biggest fault is its lack of data management. To a consumer with no

knowledge of the grid, there is no way to register, stage or access data on the



grid. The core of the problem is the lack of a catalogue for keeping track of data.
The Globus Toolkit contains a tool for data cataloging in a grid environment:

The Replica Location Service.

2.3.1 Replica Location Service

Globus’ replica location service (RLS) is simply a database mapping logical
file names, or file aliases, to physical locations. The RLS database by default
accepts two parameters for each entry: an alias for a file and a physical location.
While this seems simple, it is a basic system that fills the data management
requirements of GridX1. FEach storage resource has a local replica catalogue
(LRC) which is a catalogue of data stored there. Resources periodically update
a central replica location index (RLI), which maps file aliases to LRCs.

mercury.uvic.ca LRC table

Logical File Name | File Location

Foo.txt /home/griduser /foo.txt

test.empty /home/griduser/tests/test.empty
thuner-gw.phys.ualberta.ca LRC table

Logical File Name | File Location

Foo.txt /homes/gridX1/gcl/Foo.txt
Central RLI table

Logical File Name | LRC Host

Foo.txt mercury.uvic.ca
thuner-gw.phys.ualberta.ca

test.emtpy mercury.uvic.ca

Figure 2: Sample RLS tables

Figure 2 shows a simple example of a file registered on the grid. “Foo.txt”
is the file alias and it exists on the “mercury.uvic.ca” resource at the location
“/home/griduser/foo.txt” in a UNIX file system. Mercury’s LRC database entry
for “Foo.txt” contains the mapping “Foo.txt = /home/griduser/foo.txt”. The
central RLI database contains the mapping “Foo.txt = mercury.uvic.ca” as well

as “Foo.txt = thuner-gw.phys.ualberta.ca” because Foo.txt also exists on the

10



thuner-gw resource.

Using this cataloging system, GridX1 is able to add new resources and main-
tain a unified cataloging system with few changes. While the system is simple
and scalable, it is far from transparent and secure. Inaccurate entries can be
easily placed into an LRC database which could result in errors when a consumer

tries to make use of the data.

2.3.2 Consumer RLS Interface

The development of a consumer-RLS interface stemmed from the need for users
to be able to register data with the grid easily. Globus’s RLS tools are simple
to use, but require that the user enter each data file individually. If a user
wishes to register 10,000 data files, this is clearly a daunting task. Rather than
requiring consumers to create ways to register data, a script was developed to
ease the process.

The Grid Canada File Manager[A] script contains a user friendly interface to
the RLS database through which users can register their data. It can be executed
from the command line and takes simple commands such as “Reg *.txt” (which
registers all files ending in ’.txt’, into the local LRC database). Other features
of the file manager can be found in the documentation. Future development for
the file manager includes a web portal, and more layers of security.

While registration is now simple, security issues arise. Despite the file man-
ager’s ability to only register existing files, users can still directly access LRC
databases and make erroneous, potentially malicious, entries. To prevent this,
direct access to the LRC database was limited to administrators, forcing users

to use the file manager program to update the database.

11



2.3.3 Input Data Access

Cataloging is accomplished through Globus’s RLS database and copying across
the grid is done by Globus’s copy routines; but, to make the system transparent,
a link between the two is necessary. The basic steps in copying data on the grid
are query an RLI database with filename, get LRC name(s) containing file,
query that LRC for file location, and run a Globus copy. This is far from
transparent. A user running an application needs knowledge of the location of
the RLI database, as well as knowledge of Globus commands. To overcome this,
a script was written to preform transparent data copying: gcep[A].

Use of this routine involves simple commands such as: “gcep dataset1” which
copies the file “dataset1” to the current location. The script first queries an RLI
database, queries an LRC based on RLI output, and either Globus copies the
file, or creates a symbolic link to the file if it is located locally. A user application
can make use of this copy routine to transparently copy any files registered on

the grid to the resource the application is running on.

2.3.4 Data Staging and Output

The last big obstacle in data management in a grid architecture is dealing with
temporary data. While transparent access is still required, staged input files
(provided by the consumer on the submit machine) and application output
need to be removed from the grid once their purpose is served. This can be
overcome with a caching system.

Caching involves keeping commonly used data close to where it is needed.
In the grid paradigm, a “grid cache” holds temporary files that require reg-
istration with the grid, but not permanently like data files. A grid caching
system was developed for this purpose. Each resource has a specified directory

in which consumers or submit programs can place data temporarily. This di-

12



rectory is tracked by a UNIX daemon which periodically updates the resource’s
LRC database with the new/removed contents of the directory.

Through this caching system, users are able to stage temporary input files
and return output data back to the submit machine, without committing per-

manent files to grid registration.

2.4 Applications on the Grid

Using the data management tools developed, a generic application can now
be executed on the grid with only minor adjustments. A common application

execution would consist of:

1. Consumer submits job and staged input files(s) to resource broker
2. Resource broker chooses a resource to execute the job
3. Resource broker caches input file(s) on resource
4. Resource broker submits job to resource
5. Grid Resource executes job script
6. Job script copies input from cache
7. Job script runs geep to access data
8. gcep grid copies or links local data
9. Job script executes physics application
10. Job script copies output files to resource cache
11. Grid Resource returns status and location of output to RB

12. Resource broker returns output to submit machine and consumer

13



Grid enablement of an application merely requires the user provide the nec-
essary input files to stage, the input files to copy, and a script to execute the
application. This transparent implementation can now be used to grid-enable

scientific applications.

2.5 Test Applications

With some basic data management software in place, application testing can
begin on GridX1. The main goal of the testing is to work out any bugs in
the network architecture. Two applications were used in testing: ATLAS Data

Challenge 1 and BaBar BetaMiniApp.

2.5.1 ATLAS Data Challenge 1

The ATLAS data challenges are an effort to prepare the Large Hadron Collider
Computing Grid (LCG) for the immense amount of data it will need to process
when experiments at LHC begin taking data. Data challenge 1 (DC1) was the
first phase of the project. The test application requires an input file ( 1.5Gb), a
database and a local installation of the software. The DC1 was already installed
on each resource from tests of a previous grid implementation. The database
was set up on each resource to avoid congestion and the input files were evenly
distributed between the three grid resources.

Tests consisted of 100 job submissions, over a period of 24 hours, to the
resource broker from a standard submit machine. The execution script submit-
ted[C] set up the ATLAS environment, created work space, copied the input,
ran the application, and placed the output in the resource cache. Brokering was
based solely on expected wait time. Not all jobs required a grid copy, some jobs
were submitted to a machine that already had a local copy of the data file.

Figure 3 shows the success rates for each resource taking part in the tests.

14



Test # | UVic (success/total) | UAlberta (success/total) | NRC (success/total) | All

1 175 10/73 17 7 22 31/ 100

2 0/0 14 / 80 20 / 20 34 /100

3 0/0 24 / 44 50 / 56 74 / 100

4 27 / 30 2 /55 15 / 15 44 / 100

5 50 / 53 20 / 23 23 / 24 93 / 100

6 3/3 27 / 30 65 / 67 95 / 100

Total | 84 / 91 (92.3%) 07 / 305 (20.8%) 190 / 204 (93.1%) | 371 / 600 (61.8%)

Figure 3: Success rate for each resource

Failure Breakdown | UVic | UAlberta | NRC | All
Submission 85.7% | 10.1% 0.0% | 11.7%
Data Transfer 14.3% | 87.0% 14.3% | 79.9%
Execution 0.0% | 2.8% 85.7% | 8.3%

Figure 4: Breakdown of failures

The low number of jobs submitted to the UVic site is due to the cluster mainte-
nance. Test 6 submits only 3 jobs to the UVic site because the cluster is quite
busy running production grid jobs. UAlberta receives a large number of jobs
in early tests because many jobs failed right away on submission, resulting in
that site remaining free for most of the test. The resource broker distributed
the jobs as expected given the conditions. No errors were found in the resource
broker during tests.

Figure 4 shows the breakdown for errors in the jobs. Most errors occurring
at the UAlberta site were due to configuration problems with the cluster that
were solved by the end of the tests. UVic’s failure rate, far less significant
than UAlberta’s, is due to submission problems to the resource. NRC, the
most successful site, only failed jobs in which it received corrupted data from a
transfer.

Through application testing, many bugs in the grid architecture were worked

out resulting in an acceptable final success rate of over 90%.

15




2.5.2 BaBar BetaMiniApp

While the ATLAS DCI1 software was a good test platform for all the resources, a
practical application still needed to be grid-enabled. The BaBar BetaMiniApp
is an application used commonly to analyze data from the BaBar experiment.
This application is quite well suited for grid-enablement since it takes most of
its data in the form of data files. Since the BaBar environment is complex, there
was no time to install it on all three resources. The Mercury cluster at UVic
had an existing installation that would be suitable for grid-submission.

The MiniApp requires a database, input files, and configuration files. The
database was already set up on Mercury. 10 input files were distributed about
the 3 grid resources. The configuration files are constructed by the user, so they
needed to be staged onto the grid where they could be accessed.

A script was written to execute simple MiniApp jobs via Globus. Submis-
sion involved first staging the configuration files (test.tcl) onto a grid resource’s
cache then submitting the job script via Globus to the resource broker. Once
submitted, the resource broker recognized it required a BaBar installation and
routed the job to UVic. Once executed, the job script set up the BaBar envi-
ronment based on local parameters, copied the staged configuration files from
the resource cache, ran gecep to receive its data files and finally executed the
BetaMiniApp application. Figure 5 displays the process.

Final tests of the BaBar BetaMiniApp software were successful, proving that

practical applications could be grid enabled using the tools developed.

16



Figure 5: BaBar BetaMiniApp flowchart

3 Conclusion

Basic data management tools have now been developed and tested for GridX1.
Application tests have proved helpful in determining bugs in GridX1’s resources
and have provided promising final results. A commonly used high energy
physics application (BaBar BetaMiniApp) was successfully grid enabled indi-

cating GridX1’s prospects in practical scientific computation.

4 Recommendations

All of the scripts and routines developed during this work term should be con-
sidered prototypes. Initial testing of GridX1 as a platform for scientific compu-
tation proved promising, but data management tools should either be further
developed or alternative tools should be considered. While grid-enablement of
applications is now possible, the process is far from scalable. A uniform method

of application installation needs to be developed to ease the grid-enablement

17



process.

5 Acknowledgements

I would like to thank Randy Sobie for offerring me the opportunity to contribute
to the GridX1 project. In addition I would like to acknowledge the contributions
of Ashok Agarwal, Dan Vanderster and Lila Klektau in the development and
implementation of GridX1’s hardware and software architecture. Without their

contributions this report would not have been possible.

18



6 Appendices
A  7gccp” Program

#!/usr/bin/perl -w

# Set perl QINC variable to include Globus module
BEGIN {
chomp ($1ibloc = ‘echo “gcprod01/bin‘);
unshift (@INC, $libloc);
I
use Globus;
use Getopt::Std;

# Set default RLI server
$RLIHOST = "grid.phys.uvic.ca"

# Check for proper environment or stop

my $dest=(), $desttype=(), @filelist=(), $cache="NULL", $localhost = ‘echo
\$GLOBUS_HOSTNAME;

die "\$GLOBUS_HOSTNAME environment variable not defined.\n" if ($localhost eq "\n");

sub helpQ);
sub printv($);
sub linkfile($);

%options=Q);

# Get options and assign destination server, type, directory
getopts("hvs:d:c", \Joptions) or help();
help() if defined $options{h};
if ( defined $options{s} ) {
$destserv = $options{s} ;
chomp ($destdir = (defined $options{d}) ? $options{d} : globus("echo \$HOME",
$destserv) );
$desttype = "server";
eval{$globusout = Globus::run("source ~“gcprod0l/gcsource ; echo \$RLSHOST ;
echo \$GC_CACHE", $destserv)};
die "Error contacting destination server: $@\n" if $0;
($destlrc, $cache) = split(/\n/, $globusout);
}
else {
chomp ($destserv = ‘echo \$GLOBUS_HOSTNAME®);
chomp ($destdir = (defined $options{d}) ? $options{d} : ‘pwd);

19



$desttype = "local";
chomp ($destlrc = ‘echo \$RLSHOST® ) ;
chomp ($cache = ‘echo \$GC_CACHE‘) if (defined $options{c});

# Die if no files were input to copy

die "Error: You need to enter a file to copy!\n" if (scalar QARGV == 0);

die "Error: Environment variables no properly set on $destservi\n" if ($destlrc
eq "\n" || $cache eq "\n");

# Retrieve 1lfn’s of files to be copied
unshift(@filelist, pop(@ARGV) ) while (scalar QARGV > 0);

# Copy/link each 1lfn requested

foreach my $1fn (@filelist) {
my $transfercomplete = 0;

# Query RLI server for entries matching 1lfn
$transfercomplete = 1 if ( Globus::rli_check($lfn, $destlrc, $RLIHOST)
&% linkfile($1lfn) );

# Parse RLI output to find LRC’s with required LFN
if (!$transfercomplete) {
printv("\nScanning RLI $RLIHOST for LFN matching $1fn...\n");
# Extract LRCs from RLI output
eval{/lrcmap = Globus::rls_get_mappings("rli" , $RLIHOST, $1fn)};
if($@) {
print "Error contacting $RLIHOST: $0\n";
$RLIHOST = "ontario.iit.nrc.ca";
eval{/lrcmap = Globus::rls_get_mappings("rli" , $RLIHOST, $1fn)};
if (8@ {
die "Could not contact backup rli: $RLIHOST:$@\n";
}
¥

@lrclist = values (%lrcmap);

# Correct for multiple LRC returns

if (scalar @lrclist == 1 && "@lrclist" =" /\s/) {
my $temp = "@lrclist";

$temp =~ s/ $1fn//g;

@lrclist = split(/ /, $temp);

}

if (scalar @lrclist == 0) {
print "Error: LFN \"$1fn\" was not found in RLI database.\n";

20



next;

}

printv ( (scalar @lrclist)." LRC(s) found with $1fn\n" );
}

# Pick a host at random to copy from, attempt to copy, and repeat with
another host if failure
while ( !$transfercomplete && (scalar @lrclist > 0) ) {

$srcserv = "";

@pfnlist = ();
# Pick a random host
my $random = int(rand(scalar @lrclist));
$1lrc = $1lrclist[$random];
# Determine host LRC’s resource URL from RLS entry
eval{$srcserv = Globus::rls("query lrc 1lfn", "GC_RESOURCE", "$lrc")};
if ($0) {

print "Error determining resource associated with LRC $lrc:

$0\nTrying another LRC...\n";
splice (@lrclist, $random, 1);
next;

}
$srcserv =~ s/ GC_RESOURCE: //;

# Query LRC to find PFNs
printv("\nScanning LRC $1lrc for LFN matching $1fn...\n");
eval{/pfnmap = Globus::rls_get_mappings("lrc", $lrc, $1fn)};
if ($@) {

printv "Error contacting LRC: $@\n";

splice (@lrclist, $random, 1);

next;

}
(@pfnlist) = values (Vpfnmap);

# Correct for multiple LRC returns
if (scalar @pfnlist == 1 &% "@pfnlist" =~ /\s/) {
my $temp = "@pfnlist";
$temp =" s/ $1lfn//g;
@pfnlist = split(/ /, $temp);
X

printv( (scalar @pfnlist)." copies of $1fn found in $lrc\n");

# Pick a PFN at random (if more than one) and attempt to copy
while ( !$transfercomplete && (scalar @pfnlist >0) ) {

21



# Pick a random PFN
my $random2 = int(rand(scalar @pfnlist));
$pfn = $pfnlist[$random2];

# If cache option is chosen, cache the file and link
if ( defined $options{c}) {
printv "\nCaching $lfn\nFrom: $srcserv:$pfn\nTo:
$destserv:$cache\n";

# Cache the file

$type = ($desttype eq "local") 7 "file://"
"gsiftp://$destserv";

chomp( $copyout = ‘globus-url-copy gsiftp://$srcservipfn
$type$cache/$1fn 2>&1°¢ ) ;

printv "Creating link to cached file $destdir/$1lfn to
$cache/$1fn\n";

# Create link

my $linkout = ($desttype eq "local") ? ‘ln -s $cache/$1lfn
/$destdir/$1fn¢ : Globus::run("ln -s $cache/$1lfn
$destdir/$1fn", $destserv);

}

else {
printv "\nCopying $lfn\nFrom: $srcserv$pfn\nTo:
$destserv$destdir/$1fn\n";

# Copy the file
$type = ($desttype eq "local") 7 "file://"
"gsiftp://$destserv";
chomp( $copyout = ‘globus-url-copy gsiftp://$srcserv$pfn
$type$destdir/$1lfn 2>&1°¢ );

}

# If copy was successful, set success flag
if ( $copyout eq "" ) {
printv( "Transfer successful.\n\n");
$transfercomplete = 1;

}

# Copy unsuccessful, remove PFN from list and try to copy from
other file
else {
print "An error was encountered copying $1fn from $srcserv$pfn.
Attempting to copy from another location...\n";
print "$copyout\n";
splice (@pfnlist, $random2, 1);

22



# If transfer from LRC was unsuccessful, remove from list and attmempt
copy from another LRC
if (!$transfercomplete ) {
print("Failed to copy from $srcserv, Trying another location...\n")
if (@lrclist > 1);
splice (@lrclist, $random, 1);

}

}

# Failed to copy from any PFN on any LRC

if (scalar @lrclist == 0 && !$transfercomplete ) {
print "Failed to copy $1fn from GC resources\n";

}
}

sub help() {

print <<eot;

Usage: gccp [-h] [-v] [-s hostname] [-d destdir] [-c] filel file2 file3...
where
-h displays this page

-v executes in verbose mode (recommended)

-s hostname sets the destination server (default current machine) to
hostname

-d destdir sets the destination directory (default current directory)
to destdir

-c caches the file on the destination machine and creates a link in
the destination directory

-fileX name of file to be copied

eot
exit(0);

23



sub printv($){
print $_[0] if (defined $options{v});
}

# Linkfile checks an LRC for a PFN to input LFN and
# creates a link. This function is tightly coupled with the main script.
sub linkfile($) {

my $1fn = shift;

my 7mappings = Globus::rls_get_mappings("lrc", $destlrc, $1fn);
my (@pfnlist) = values (%mappings);

print "linkfile\n";

while (scalar @pfnlist > 0) {
$pfn = pop(@pfnlist);
printv "Requested file exists on GC node;\nCreating link from
$pfn to $destserv/$destdir/$1lfn\n";
$linkout = ($desttype eq "local") ? ‘Iln -s $pfn /$destdir/$lfn*
globus("ln -s $pfn $destdir/$1lfn", $destserv);

return 1 if ($linkout eq "" || $linkout =~ /File exists/);
}
return -1;

}

B 7gcfm” Program

#!/usr/bin/perl -w

# Set perl Q@INC to inlcude Globus module

BEGIN {
chomp($1libloc = ‘echo “gcprod01/bin‘);
chomp ($RLSHOST = ‘echo \$RLSHOST®);
unshift (QINC, $libloc);

+;

use Globus;

24



use Getopt::Std;

# Get '"preserve" or '"recursive" arguments
%options =
getopts("ph", \/options);

# Subroutine Getmappings: Confirms the existance and returns locations of
files and wildcard expansions received as arguments
# Input: file names or wildcard expansions
# Output: A hash containing logical filename keys and physical filename values
of existing files corresponding to input
sub getmappings {

my $args = shift;

$mapopts{r} = 1 if ($args =~ s/-r //gi);

$mapopts{p} = 1 if ($args =~ s/-p //gi);

my Qwilds = split(/[\s]l+/ , $args);

my $pwd = ‘pwd‘;

my $recurse = (defined $mapopts{r}) ? "" : "-maxdepth 1";
chomp ($pwd) ;

foreach $wild (@wilds) {
$dir = ";
($dir,$wild) = $wild =" /(. *\/)(.%x)$/ if ($wild =" /\//);
$findout = ‘find $dir -name ’$wild’ -type f $recurse;
$findout =~ s/\.\///g;
@matches = split(/\n/, $findout);
$error = (-d $wild) 7 "ommitting directory $wild\n" : (scalar @matches == 0)
? "could not match \"$wild\"\n" : "";
print $error;
push(@files, pop(@matches)) while (scalar @matches > 0);
}

for ($i = 0 ; $i < scalar @files ; $i++) {
$1fn = $files[$il;
($1fn) = $1fn =" /~.*\/(.*)/ unless (defined $mapopts{p} || $1fn !~ /\//);
($mappings{$1fn}) .= ( $files[$i] =~ /°\// ) 7 " $1lfn ".$files[$i] : " $1lfn
$pwd/$files[$i]l" if (defined $mappings{$lfn});
($mappings{$1fn}) = ( $files[$i] =~ /"\// ) 7 $files[$i] : "$pwd/$files[$il"
unless (defined $mappings{$1lfn});

}

return %mappings;

# Exit if environment not properly set
die "\$RLSHOST environment variable not defined\n" if ($RLSHOST eq "");

25



# Retrieve STDIN input
$_ = <STDIN>;
chomp;

# Take action according to input

# Register files with RLS database defined in environment variable $RLSHOST (files must
if (m/"reg (.*%)/ ) {

my %mappings = getmappings($1);

Globus::rls_add(\/mappings, "$RLSHOST", 50) if (keys JYmappings >0);
b

# Deregister files from RLS database (files must exist)
elsif ( m/"dereg (.*)/ ) {
my %mappings = getmappings($1);
Globus::rls_rm(\%mappings, "$RLSHOST", 50) if ( keys %mappings > 0);

# Register mapping with RLS database
elsif ( m/"rls-add (.*)/ ) {
my Qargs = split( /[\s]l+/ , $1);
die "malformed input: incorrect number of strings to map\n" if ( ( (scalar Qargs %
2) == 1) || (scalar Gargs == 0) );
my %mappings = map { $args[$_x2], $args[$_*2 + 11} 0 .. ( (scalar Q@args) / 2 - 1);
Globus::rls_add(\/mappings, "$RLSHOST", 50);

# Remove mapping from RLS database
elsif ( m/"rls-rm (.%)/ ) {
my G@args = split( /[\sl+/ , $1);
die "malformed input: incorrect number of strings to map\n" if ( ( (scalar Qargs %
== 1) || (scalar Qargs == 0) );
my %mappings = map { $args[$_x2], $args[$_*2 + 11} 0 .. ( (scalar @args) / 2 - 1);
Globus::rls_rm(\%mappings, "$RLSHOST", 50);
}

# Execute a command on a remote host (job submission)
elsif ( m/~cmd (.x?) (.%)/ ) {

my ($host, $cmd) = ($1, $2);

my $globusout = Globus::run("$cmd", $host);

print "$globusout\n" unless ($globusout eq "");

}
else {

die "unrecognized command\n";
X

26



C ATLAS Execution Script

#!/bin/bash
echo Job Started at: ¢/bin/date’
echo Job Running on: ‘/bin/uname -a‘

# Set up GC/Atlas environment
source ~gcprodOl/gcsource

# GET VARIABLES FROM ARGUMENTS
partition=%$1
jobid=$2

# Fix condor attribute bug
if [[ $jobid = "" 1] ; then
jobid=‘echo $partition | sed -e ’s/.x //’¢
partition=‘echo $partition | sed -e ’s/ .*x//’¢
fi
partition=00$partition

# Record execution in job log
echo Job ${jobid} - started at: ‘/bin/date¢ >> $GC_CACHE/joblog

# SET OTHER VARIABLES

VERSION=6.0.2-1

DEBUG=true

DATASET=002000

LUMI=1umi0O2

DESCR=hlt.pythia_jet_17
INPUTFILE=dc1.${DATASET}.${LUMI}.${partition}.${DESCR}.zebra
EXECFILE=recon.gen.v5.with602rpmkit

JOBOPTFILE=eg7.602. job

MAXEVENT=1000

export JOBNAME=dcl.${DATASET}.${LUMI}.recon.${partition}.${DESCR}
export WORKDIR=$HOME/atlas/${VERSION}/${JOBNAME}_${jobid}

export OUTDIR=$HOME/atlas/${VERSION}/project/dcl/recon/data/${DATASET}

HHHBHAH AR HHHRRARA

### Start Script ###
i

27



# SETUP
echo Job Setup Started at: ‘/bin/date’

# Create workspace
mkdir -p ${WORKDIR}
cd ${WORKDIR}

# Copy executables
cp $ATLASDIR/${VERSION}/${EXECFILE} .
cp $ATLASDIR/${VERSION}/${JOBOPTFILE} .

# Grid-copy data file
echo "Running gccp -v ${INPUTFILE}"
gcep -v ${INPUTFILE}

# Execute applications

# ATHENA EXECUTION

echo Job Execution Started at: ‘/bin/date’

time ./${EXECFILE} ${INPUTFILE} ${JOBNAME}.ntuple
>& ${JOBNAME}.log 2>&1

# SAVE IMPORTANT FILES

echo Job Cleanup Started at: ‘/bin/date‘
mv atlas.his ${JOBNAME}.atlas
mv histo.hbook ${JOBNAME}.histo

OUTPUTFILE=${jobid}_${JOBNAME} output.tar

# Tar output and move to cache
tar cf ${OUTPUTFILE} ${JOBNAME}.*
mv ${OUTPUTFILE} $GC_CACHE

# REMOVE WORKING DIRECTORY
cd ${WORKDIR}

cd ..

rm -rf ${WORKDIR}

# Report job finished

./${JOBOPTFILE} ${MAXEVENT}

echo Job ${jobid} - finished at: ‘/bin/date‘ >> $GC_CACHE/joblog
echo "Job output has been cached on ‘echo $GLOBUS_$HOSTNAME/‘echo $GC_CACHE

¢/$0UTPUTFILE."
echo Job Finished at: ‘/bin/date‘

28



D BaBar BetaMiniApp Script

#!/usr/bin/perl -w

# Set release and architecture parameters
$REL= "14.5.2";
$ARCH= "Linux24RH72_1i386_gcc2953";

use Getopt::Std;
sub printv($);
my %options = ();

# Get arguments

getopts("j:vr:h:f:c:s:d:a:",\options);

die "One of -r [filename.root] or -h [filename.hbook] is required\n" unless
(defined $options{r} ~ defined $options{h});

die "A ConfigPatch field (-c) is required and must be one of: Runl, Run2, MC\n"
unless (defined $options{c} && $options{c} =~ /MC|Runl|Run2/);

die "A valid source file (-f [sourcefile] ) is required\n" unless (defined
$options{f} && -f $options{f});

die "Invalid levelofdetail type\n" if (defined $options{d} && $options{d} !~
/micro|cache|extend|refit|rebuild/);

die "A job identifier is required\n" unless (defined $options{j});

die "Input collections required\n" unless (scalar GARGV > 0);

my ($source, $cpatch, $afiles, $job, Qinput) = ($options{f} , $options{c},
$options{a},$options{j},@ARGV);

my ($type, $outfile) = (defined $options{h} ) ? ("hbook", $options{hl})
("root", $options{rl});

my $detail = (defined $options{d}) 7 $options{d} : "cache";

my ($sourcename) = $source =" /.*x\/(.*x)$/;

$sourcename = $source unless (defined $sourcename);

# Print verbose information

printv "JobID: \t\t\t$job\n";

printv "sourceFile: \t\t$source\n";
printv "ConfigPatch: \t\t$cpatch\n";
printv "$type Output: \t\t$outfile\n";
printv "level of detail: \t$detailln";
printv "Input Collections: \t@input\n";

# Create main TCL file

open TCL, ">$job.tcl";
print TCL "lappend inputList";

29



foreach $kanga (@input) {
print TCL " $kanga";

¥

print TCL "\n";

print TCL <<eot;

set levelOfDetail "$detail"

set ConfigPatch "$cpatch"

set BetaMiniTuple "$type"

set histFileName "$outfile"

sourceFoundFile $source

eot

close TCL;

# Tar input files and upload to mercury cache

printv "\nTarring input files...\n";

printv ‘tar cvf $job.tar $source $job.tcl®;

printv "\nUploading analysis files to mercury.uvic.ca cache...\n";

print ‘globus-job-run mercury.uvic.ca -1 /bin/sh ’-c’ ’source ~“gcprod0l/gcsource ;
cd \$GC_CACHE ; mkdir $job’‘;

chomp(my $pwd = ‘pwd‘);

print ‘globus-url-copy file://$pwd/$job.tar gsiftp://mercury.uvic.ca/homelx/gcprod
/gcprod01/GC_CACHE_mercury.uvic.ca/$job/${job}tin.tar®;

# Remove temporary files
printv ‘rm $job.tar $job.tcl‘;

# Create execution script

open SCRIPT, ">scriptfile.csh";
print SCRIPT "#!/bin/tcsh -f\n";
print SCRIPT <<eot;

setenv PATH /bin:/usr/bin:.

source ~gcprod0l/gcsource.csh

source /homelx/gcprod/gcprod06/babar/.babrc

setenv LD_LIBRARY_PATH ‘echo \$LD_LIBRARY_PATH®:/homelx/OtherMounts/hep04/gcprod/gcprod0
cd babar

newrel -t $REL $job

cp -r /homelx/gcprod/gcprod06/babar/packages/$REL/workdir $job/workdir

cp -r /homelx/gcprod/gcprod06/packages/$REL/BetaMiniUser $job/BetaMiniUser

cp -r /homelx/gcprod/gcprod06/packages/$REL/BetaPid $job/BetaPid

cd $job

srtpath $REL $ARCH

gmake installdirs

gmake workdir.setup

cd workdir

globus-url-copy gsiftp://mercury.uvic.ca/homelx/gcprod/gcprod01/GC_CACHE mercury.uvic.ca

30



$job/${jobtin.tar file:///\$PWD/${job}in.tar
tar -xvf ${joblin.tar

eot
print SCRIPT "gccp -v";
foreach $kanga (@input) {
print SCRIPT " $kanga.O0l.root";
X
print SCRIPT "\n";
print SCRIPT "which BetaMiniApp\n";
print SCRIPT "BetaMiniApp $job.tcl \n";
close SCRIPT;

# Submit script to mercury cluster
print ‘globus-job-submit mercury.uvic.ca/jobmanager-pbs -s scriptfile.csh®;

sub printv($){

print $_[0] if (defined $options{v});
¥

31



References

[1] M. Barnett, “The Atlas Experiment”, [Online Document], Available at
HTTP:http://atlasexperiment.org/index.html

[2] W. Tomlin, “LHC Computing Grid Project (LCG) Home Page”, [Online
Document], Available at HTTP:http://lcg.web.cern.ch/LCG

32



