

i

Letter of Transmittal
Elisabeth Klassen
1815 Teakwood Road
Victoria, BC
V3G 2Y5

February 6, 2021

Dr. Ash Senini
3800 Finnerty Road
Victoria, BC
V8P 5C2

To whom it may concern,

This is the coop report “Testing Frameworks for the Cloudscheduler Web Interface”, written as part of

Elisabeth Klassen’s second work term (term 2A, Software). This coop was undertaken under the

supervision of Randall Sobie, at the High Energy Physics Research Center (HEPRC) at the University of

Victoria.

The Cloudscheduler v2 web interface, one of the projects run by this group, required a set of tests for the

web framework. This report will look at three possible testing frameworks for the website – Selenium and

Unittest, Selenium and Behave, and Testcafe – and analyze which of the three would be best, in terms of

code maintainability and readability, ease of setting up and running the tests, and ease of creating and

editing the tests. It will analyze the strengths and weaknesses of each framework and present a final

decision on which one would be best for this project.

The team at HEPRC was extremely helpful, in both the decision-making process and the development of

these tests. Special thanks to Colson Driemel for his assistance with coding errors and locating bugs in the

web frontend.

Elisabeth Klassen

HEPRC

Attachment: Testing Frameworks for the Cloudscheduler Web Interface

ii

Table of Contents
Letter of Transmittal .. i
Table of Contents ... ii
Summary .. iii
Glossary ... iv
Introduction .. 1

Objective ... 2
Discussion .. 3

Selenium and Unittest ... 3

Advantages ... 3
Disadvantages .. 4

Selenium and Behave ... 5
Advantages ... 5
Disadvantages .. 6

TestCafe .. 7

Advantages ... 7
Disadvantages .. 8

Conclusions .. 10
Recommendations ... 11
References .. 12

iii

Summary
 The Cloudscheduler web interface requires a set of unit tests to ensure its proper functionality.

Three frameworks - Selenium and Unittest, Selenium and Behave, and Testscafe - were evaluated for

their efficiency in creating these tests.

 The criteria established were readability (the ease of a user writing and running the tests to

understand what is occurring), maintainability (ease of setup and creation of tests), and scope (the amount

of features the framework could test). Each framework was evaluated using an analysis of these features

and a short sample test suite.

 It was concluded that Selenium and Unittest would make the best framework. Going forward, a

suite of these tests should be created to test the Cloudscheduler web interface.

iv

Glossary
Virtual machine (vm) A file that behaves as if it were a computer [1]

Selenium A program that interacts with various webdrivers

to allow remote operation of a browser [2]

Unittest A testing framework built into python [3]

Behave A gherkin-language testing framework for python

[4]

TestCafe A JavaScript web testing framework that allows

remote operation of a browser [5]

Webdriver A program that remotely runs one or more

different web browsers [6]

Geckodriver A webdriver for Mozilla Firefox [7]

Gherkin A human-readable plaintext language for writing

tests [8]

1

Introduction
 The Cloudscheduler v2 program (from now on referred to as “Cloudscheduler”) is a program to

boot and organize virtual machines for scientific projects around the globe [9]. It organizes computing

resources for many important projects and schedules jobs on virtual machines for many of said projects.

 Cloudscheduler is written primarily in Python3. It uses a set of pollers to transfer information on

the states of clouds and jobs into a database [9]. Using the data from this database, it boots virtual

machines appropriately for the jobs that are waiting to be run, based on a series of internal criteria [9]. It

has been in use since early 2019 [9].

 Cloudscheduler has both a command-line interface and a web interface. [9] The command line

interface has a set of unit tests to ensure its proper functionality, while the web interface does not. This

means that the web interface requires manual testing to find bugs, which can often be unreliable or miss

certain problems. Additionally, it takes a lot of time.

 This report will discuss three possible testing frameworks for creating the web tests – one using

Selenium and Unittest, one using Selenium and Behave, and one using TestCafe.

2

Objective
 The Cloudscheduler web interface currently lacks a set of tests to ensure its proper functionality

when new features are developed. Thus, the goal is to choose a proper framework for these web tests to

be implemented.

 The tests should be easily understandable, both by the creators, any additional contributors, and

by people who need to run them. They also should be easy to set up, run and maintain. Additionally, the

tests should have a wide scope of usable browsers and operating systems, so the tests can be ensured to be

reliable.

 The test framework chosen must have the wide variety of features necessary to test the

Cloudscheduler interface. The framework must have a license that works with Cloudscheduler as an

open-source project. As well, the framework chosen must be such that a developer assigned to it can

create the test framework within a period of several months.

 This report will look at these frameworks in terms of the goals set out above – comprehensibility,

maintainability, and scope. However, the scope of the report will be limited to the three frameworks

investigated and will not cover any additional concerns that could arise outside of the three goals

previously stated.

3

Discussion
This section of the report will investigate the three frameworks – Selenium and Unittest,

Selenium and Behave, and TestCafe – in detail. It will discuss the advantages and disadvantages of each,

with the goals of comprehensibility, maintainability, and scope in mind.

Selenium and Unittest
 The first framework under consideration is a combination of Selenium and Unittest. Selenium is a

webdriver interface designed to be usable with most modern browsers and a variety of languages [2].

Unittest is a built-in Python testing framework using classes to provide the tests [3]. This section will

discuss the advantages and disadvantages of this framework for the Cloudscheduler testing framework.

Advantages

 The Selenium and Unittest framework has a variety of advantages. It is easy to understand for

anyone who programs in Python, the setup and maintenance is simple, and it has a wide scope.

 Selenium and Unittest tests are fairly easy to understand, especially for the people who would be

programming Cloudscheduler. They are written in Python [3], like the majority of the codebase, meaning

that programmers who work with the rest of the codebase will understand them. The tests are also written

in a traditional Python style, which makes it easy to read through the tests and understand how variables

are being passed and setup is being done. Additionally, for those who are running the tests, the output

they produce is simple and readable, especially when run to be more verbose [3]. It is easy to tell when

tests are failing, and when run with the verbose argument, the tests and their containing classes are named

as they are run, making it simple to track down the errors [10].

 The setup and maintenance for these tests is also simple. One needs to use pip, the Python

package manager, to install the Selenium bindings – the code that allows Selenium to communicate with

Python [11]. Then, in order to make Selenium work, one must also install the drivers for the browsers one

4

wants to test on [12]. Unittest, however, comes preinstalled with Python [3], meaning that no import is

necessary – the programmer may simply import the module into their code and use it. The tests are also

easy to maintain – they are written in Python, like the rest of the codebase, and use traditional Python

styles for writing.

 Additionally, the scope of testable features is large using Selenium and Unittest. Selenium is

usable on almost any modern browser because it interacts with drivers created for each individual browser

[12]. It can also perform a wide variety of interactions, including clicks, drag-and-drop actions, and

typing [13]. In the event that the Selenium bindings do not provide support for an action, they also

provide a method to allow the programmer to execute JavaScript (ie, to use code that directly interacts

with the webpage) to perform an action [14].

Disadvantages

 On the other hand, the Selenium and Unittest framework has a variety of disadvantages as well.

The tests can be prohibitive to understand for some users, the Selenium setup has significant drawbacks,

and the scope is limited by individual drivers and the features they implement.

 While Selenium and Unittest tests are, overall, readable for anyone who works in Python, this

breaks down when the person reading the tests is not a programmer. Python, overall, is a human-readable

language, but the plain text descriptions of the tests are often short and rarely descriptive unless the

creator of the tests devotes significant time to rectifying this [3]. For those who need to run the tests

without fully understanding code, there are idiosyncrasies in the way Selenium interacts with the browser

that can make the actions of the tests oftentimes confusing.

 The Selenium setup also has some major disadvantages, the main one being the use of drivers.

Each browser or family of browsers Selenium interacts with requires a different driver [12]. Each driver is

created by a different developer – typically the developer of the browser – and each driver must be

installed independently [12]. If one wants to run tests across multiple browsers, as is necessary for the

5

testing of the Cloudscheduler interface, this makes the setup increasingly difficult, as each driver’s

installation procedure must be added to the setup.

 The scope of Selenium is also limited by the drivers themselves – and, sometimes, by features

within Selenium that have not been implemented. For example, Selenium has no way to fill out popups

with multiple blanks [15], and, as one of these is used for the Cloudscheduler login, it requires a

workaround. Additionally, each driver is implemented by a different group of people [12]. While

Selenium has a standard for which features should be available in a driver, features will vary by driver

and driver creator [16].

Selenium and Behave
 The second framework to consider is a combination of Selenium and Behave. Selenium, as

explained above, is a cross-browser, cross-language webdriver interface [2]. Behave is a gherkin language

testing framework that uses Python as its underlying implementation. This section will discuss the

advantages and disadvantages of this framework.

Advantages

 The Selenium and Behave framework has several advantages. They use readable test scripts, they

have a great amount of reusability, and they have a large feature scope.

 Test scripts written with Selenium and Behave are easily human-readable. The test files

themselves are written in Gherkin language, which is a stylized form of plain English that allows tests to

be run, making them understandable even to someone who doesn’t code [4]. The implementations, while

less readable, are written in Python, like the majority of the codebase, and are directly tied to the plaintext

steps within the code, so someone reading them can always see what the step is intended to do [4].

Additionally, the outputs for the tests are readable. Each Gherkin step is listed, as is its status (whether it

succeeded, failed, or was skipped) and the time it took to execute [10]. This means the tests iterate

through each action they take live in front of the user.

6

 These scripts also have a fair amount of reusability. Because each step is implemented in a

different place from where it is written [4], the steps can be reused across multiple tests without having to

modify any part of the test scripts. This can make the tests easier to maintain and add to, because new

tests can build upon steps used in the previous ones, and code does not need to be written out multiple

times. The setup is also simple – both Selenium [11] and Behave [17] can be installed via pip. Selenium

drivers can then be installed separately [12].

 Selenium and Behave have a wide range of testable features, as well. Like in the Unittest

framework, above, the webdriver used is Selenium, which supports a wide variety of frameworks and

actions [2]. Selenium can be used in almost any browser, because of its use of browser-specific

webdrivers and an interface that implements them all [12]. It also can test a majority of the features a web

site possesses [13], and can use JavaScript commands when its own interface fails [14].

Disadvantages

 Selenium and Behave also has some significant disadvantages. The code can be very difficult to

read from a programmer’s perspective, test steps are hard to find and write, and the Selenium setup has

several implementation drawbacks.

 The Selenium and Behave framework has its own difficulties in terms of readability. While the

test scripts themselves are easy to understand from a reading perspective, finding what they do in terms of

code is much more difficult. The implementation steps are stored in different files from their plaintext

counterparts [4], meaning that, in order to find what is actually happening in a single test, one must look

up each step in the plaintext file and locate it in the Python file. This is complicated by the fact that

neither file needs to indicate where a particular step is from - Behave draws all the functions together and

implements them as necessary [4]. In a large testing framework, this can make it difficult to find how any

step was written. Additionally, the Behave framework has its own rules for how test scripts must be

written, matching the Gherkin language framework, which, while fairly intuitive, has its own

idiosyncrasies that need to be learned [4].

7

 Additionally, the Selenium and Behave framework has significant maintainability problems. In

addition to making it difficult to find the test steps, as above, the added level of complexity makes

creating and using the tests more difficult. The steps are individually called, directly from the test files,

meaning that all variables passed must be in Behave’s context variable [4]. This makes passing many

types of data, such as flags, quite difficult, and means that a prior step must know what data is to be

passed to each future step. It also, especially when combined with the problems of reading the test steps,

makes it difficult to track how variables were assigned and fixtures were set up, as everything was

assigned in an arbitrary setup step that is not easy to find. This makes maintaining and learning the

codebase difficult. Additionally, the setup problems requiring multiple Selenium drivers also apply [12].

 The scope of Selenium itself also has significant limitations, as discussed above. It is dependent

on the browser drivers themselves to implement the necessary features. [16] It also has several

idiosyncrasies, including particular objects and types that are unsupported, that make it more difficult to

properly test in a web browser [15], although these often have workarounds.

TestCafe
 The third framework to consider is called TestCafe. TestCafe is a combination webdriver and

testing framework, created as an alternative to Selenium and written in JavaScript. This section will

discuss the advantages and disadvantages of TestCafe.

Advantages

 There are several advantages to using TestCafe for the codebase. The test outputs are simple and

easy to understand, the code has many maintainability advantages, and the scope of testable features is

quite wide.

 TestCafe’s test output is simple and understandable. It lists the browser and operating system it is

operating under, then goes through the tests one at a time, putting a check mark or an x when they are

complete [10]. A single time estimate is printed at the end. While minimalistic, this makes it easy to see at

a glance what is happening with the tests and where they are failing. The test names are also written as

8

plaintext descriptions, making it simple to see at a glance, even for a non-programmer, which tests are

working incorrectly.

 TestCafe has many maintainability advantages over the other two frameworks. The primary one

is that it is entirely within one framework. There is no concern when the programmers update a part of the

system as to whether TestCafe will get out of sync with itself, because TestCafe is entirely one module,

and so will always be compatible with itself. Additionally, the TestCafe install is simple. It requires a

package called npm (node package manager), which may or may not be installed on the test machine, and

if not can be installed through the default package manager [5]. However, from within npm, it only

requires a single installation command to set up.

 TestCafe also has scope advantages the other two frameworks do not possess. As well as being

able to test a large variety of browsers, TestCafe comes with support for testing under various operating

systems, so code can be tested across Windows, MacOS, Ubuntu, and more. TestCafe is also written in

JavaScript, meaning that it can interact directly in JavaScript. While Selenium can do this [14], TestCafe

is designed in this language.

Disadvantages

 TestCafe also comes with its own set of disadvantages. It is difficult to read, has some issues with

maintainability, and has its own set of scope challenges.

 One of the biggest disadvantages of TestCafe is that it is quite difficult to read. TestCafe is

written in JavaScript, a language that sees little use in the codebase [5]. This means that anyone

attempting to learn the tests would need to learn JavaScript on top of the code required to understand the

codebase. Additionally, JavaScript syntax is significantly different from most of the code used in the

codebase, meaning that it would not be intuitive to anyone who is used to the usual code on

Cloudscheduler. This makes it prohibitive to teach to new employees, and even more so for current

9

employees to add to their repertoire. While there would be some employees who know and use

JavaScript, the incongruity with the rest of the codebase makes the tests prohibitive to learn.

 TestCafe also has several maintainability issues. The largest difficulty with the maintainability of

TestCafe is that it is fundamentally different from most of the codebase. This means it runs on its own

update schedule and its own set of features, meaning that upgrades are likely to be inconsistent with

upgrades to the codebase. Additionally, TestCafe is impossible to integrate with the current testing

framework, aside from a script that could run both test setups. This means that the testing framework now

becomes two testing frameworks, increasing the difficulty of maintaining it. Additionally, TestCafe’s

setup relies on a separate package manager [5], meaning the complexity of the setup is increased.

 There are also a few scope issues with TestCafe. While TestCafe supports a large number of

browsers, operating systems, and features, there are a few missing functionalities. For example, TestCafe

has no way to select by XPath, a common language syntax used to find elements on a webpage [18].

10

Conclusions
 In conclusion, the Unittest and Selenium framework is the best framework for the demands of the

Cloudscheduler interface.

 Unittest and Selenium is much simpler to write in and understand than either of the other

frameworks. Behave and Selenium uses a plaintext mapping that makes it difficult to find steps and

follow the passing of variables. TestCafe is written in JavaScript, a scripting language rarely used

elsewhere in the code with its own steep learning curve.

 Unittest and Selenium is also fairly maintainable compared to the other two options. Unittest,

being a built-in framework, needs no outside updates or configuration. Neither Behave nor TestCafe has

this feature. Selenium does require more maintenance, but the main issue is caused by the browser

drivers, which can be independently added and removed.

 Additionally, Unittest and Selenium is a test framework with a fairly wide scope. Unittest has a

significant list of useful features, and Selenium can replicate the vast majority of browser features, in the

majority of browsers. Behave and Unittest and TestCafe are also fairly solid in this regard, but Unittest

and Selenium handles this very well.

 Overall, with regards to the three goals as a whole, Selenium and Unittest does the best job of

meeting the requirements and is the best framework to use for the job.

11

Recommendations
 With this conclusion in mind, the best path forward is to create a set of browser-based tests in

Unittest and Selenium.

 These tests should leverage the full abilities of this framework to create cross-browser tests that

test all of the many features of the Cloudscheduler interface and the various pages used to implement it.

With reference to the earlier goals, the tests should be written and documented to be as clear as possible,

including the use of clear variable and function names, descriptive comments, and useful documentation.

They should, additionally, use the minimum amount of additional configuration and setup steps necessary

for their successful operation, and should ideally have options to use or not use setups that require extra

configuration.

12

References

[1] Microsoft, "What is a virtual machine?," Microsoft Azure, 2021. [Online]. Available:
https://azure.microsoft.com/en-ca/overview/what-is-a-virtual-machine/. [Accessed 31 March
2021].

[2] Selenium, "The Selenium Project and Tools," 20 February 2021. [Online]. Available:
https://www.selenium.dev/documentation/en/introduction/the_selenium_project_and_tools/.
[Accessed 20 February 2021].

[3] Python Software Foundation, "unittest — Unit testing framework," Python Software Foundation,
20 February 2021. [Online]. Available: https://docs.python.org/3/library/unittest.html. [Accessed
20 February 2021].

[4] B. Rice, R. Jones and J. Engel, "Tutorial," ReadTheDocs, 2017. [Online]. Available:
https://behave.readthedocs.io/en/stable/tutorial.html. [Accessed 20 February 2021].

[5] Developer Express Inc, "TestCafe," Developer Express Inc, 2021. [Online]. Available:
https://devexpress.github.io/testcafe/. [Accessed 20 February 2021].

[6] Selenium, "Webdriver," The Selenium Project, 20 February 2021. [Online]. Available:
https://www.selenium.dev/documentation/en/webdriver/. [Accessed 20 February 2021].

[7] Mozilla, "README," GitHub, 3 March 2020. [Online]. Available:
https://github.com/mozilla/geckodriver/blob/master/README.md. [Accessed 20 February 2021].

[8] Cucumber, "Gherkin Reference," SmartBear, 2019. [Online]. Available:
https://cucumber.io/docs/gherkin/reference/. [Accessed 31 March 2021].

[9] F. Berghaus, K. Casteels, C. Driemel, M. Ebert, F. F. Galindo, C. Leavett-Brown, D. MacDonell, M.
Paterson, R. Seuster, R. J. Sobie, S. Tolkamp and J. Weldon, "High-Throughput Cloud Computing
with the Cloudscheduler VM Provisioning Service," Computing and Software for Big Science, no. 4,
2020.

[10
]

E. Klassen, "Additional Notes," 19 January 2021. [Online]. Available: https://github.com/hep-
gc/cloudscheduler/blob/web-testing/web_tests/additional_notes.md. [Accessed 27 February
2021].

[11
]

The Selenium Project, "Installing Selenium Libraries," 27 February 2021. [Online]. Available:
https://www.selenium.dev/documentation/en/selenium_installation/installing_selenium_libraries
/. [Accessed 27 February 2021].

13

[12
]

The Selenium Project, "Driver Requirements," The Selenium Project, 27 February 2021. [Online].
Available: https://www.selenium.dev/documentation/en/webdriver/driver_requirements/.
[Accessed 27 February 2021].

[13
]

B. Muthukadan, "Navigating," ReadTheDocs.io, 2018. [Online]. Available: https://selenium-
python.readthedocs.io/navigating.html. [Accessed 27 February 2021].

[14
]

D. Bhattacharjee, "How to click on a button with Javascript executor in Selenium with python?,"
TutorialsPoint, 28 July 2020. [Online]. Available: https://www.tutorialspoint.com/how-to-click-on-
a-button-with-javascript-executor-in-selenium-with-python. [Accessed 27 February 2021].

[15
]

A. Tolfsen, "Missing support for HTTP authentication prompts," GitHub, 4 October 2016. [Online].
Available: https://github.com/w3c/webdriver/issues/385. [Accessed 27 February 2021].

[16
]

The Selenium Project, "Driver specific capabilities," Selenium, 27 February 2021. [Online].
Available:
https://www.selenium.dev/documentation/en/driver_idiosyncrasies/driver_specific_capabilities/.
[Accessed 27 February 2021].

[17
]

B. Rice, R. Jones and J. Engel, "Installation," Behave, 2017. [Online]. Available:
https://behave.readthedocs.io/en/stable/install.html. [Accessed 5 April 2021].

[18
]

TestCafe, "Support XPath Based Selectors," TestCafe, 26 January 2017. [Online]. Available:
https://github.com/DevExpress/testcafe/issues/1178. [Accessed 27 March 2021].

