

Executive Summary

The High Energy Physics Research Computing (HEPRC) group at the University of Victoria manages com-

putational clouds for high energy physics applications. This involves maintaining a support infrastructure

of machines that must maintain a high degree of availability. To achieve this, a monitoring solution must

be put in place to capture performance metrics from running machines to ensure their consistent and correct

operation over time. In addition, this solution should be flexible enough to work with any of the machines

in the supporting infrastructure, the cloud hypervisors, and the worker nodes running on the clouds. In this

report, a number of different software packages and possible configurations are tested and evaluated. An

appropriate approach that integrates Ganglia and Nagios, along with custom software written for this appli-

cation is implemented within the HEPRC infrastructure. Furthermore, the time series data generated by the

monitoring system is then used to train an anomaly detection model, which is applied to detect when ma-

chines do not behave as they should and alert system administrators. This system can make use of multiple

metrics to detect more complex anomalies that the threshold-based single metric alerts performed by Nagios

cannot.

i

List of Figures and Tables

Figures

Figure 1 Diagram of monitoring system. 7

Figure 2 Ganglia web interface showing overview of the HEPRC grid. 8

Figure 3 Nagios web interface showing services. 8

Figure 4 Diagram of the scalability of the monitoring system. 9

Figure 5 Sample configuration directory structure. 10

Figure 6 Sample host configuration file. 11

Figure 7 Diagram of the HEPRC anomaly detection system. 13

Figure 8 Sample plot of anomalous host. 14

Figure 9 Custom metric script. A-1

Figure 10 Deployment script. A-2

Figure 11 Generic host template. A-3

Figure 12 Generic service template. A-3

Figure 13 Generic process template. A-3

Figure 14 Anomaly detection configuration. A-4

Figure 15 Anomaly detection report. A-5

Tables

Table 1 Test metrics and alerts. 5

ii

Glossary

API Application Programming Interface. Enables in-
tercommunication between software.

cloud A collection of computational resources available
on-demand over the internet.

cron A Linux utility that schedules processes to run pe-
riodically.

daemon A background process on a Linux machine.

host A computer connected to a computer network.
HTTP Hypertext Transfer Protocol. A protocol for

transmitting resources over the internet.

IT Information Technology. Use of computers for the
manipulation of information, typically in a busi-
ness context.

metric A measurable performance characteristic of a ma-
chine such as memory or network usage.

open source Software whose source code is freely available.

private subnet Hosts in a private subnet only need a private IP
address may not be directly reachable from the
internet.

SQL Structured Query Language. A language used for
managing data in relational databases.

SSH Secure Shell. A secure remote communication
protocol.

TCP Transmission Control Protocol. A communica-
tion protocol that re-transmits lost packets.

UDP User Datagram Protocol. A communication pro-
tocol that does not re-transmit lost packets.

XDR External Data Representation. A data serializa-
tion format for transmitting data over the network.

iii

Table of Contents

Executive Summary i

List of Figures and Tables ii

Glossary iii

1 Introduction 1
1.1 Problem definition . 1

1.2 Requirements . 1

2 Monitoring Infrastructure 2
2.1 Options considered . 2

2.1.1 Cacti . 2

2.1.2 Munin . 3

2.1.3 Prometheus . 3

2.1.4 ELK Stack . 3

2.1.5 Zabbix . 4

2.1.6 Ganglia . 4

2.1.7 Nagios . 5

2.2 Possible configurations . 5

2.2.1 Zabbix Standalone . 6

2.2.2 Nagios with PNP4Nagios . 6

2.2.3 Nagios with Ganglia Independent . 6

2.2.4 Nagios with Ganglia Integration . 6

2.3 Final system design . 7

2.4 Deployment . 10

2.5 Host management . 11

3 Anomaly Detection 11
3.1 Background . 12

3.2 Anomaly detection in the CERN infrastructure . 12

3.3 Anomaly detection in the HEPRC infrastructure . 12

3.3.1 Data preparation . 13

3.3.2 Model training . 14

3.3.3 Inference and reporting . 14

4 Conclusions 15

iv

5 Future Work 15

Acknowledgements 16

References 17

Appendix A Custom Metric Script A-1

Appendix B Deployment Script A-2

Appendix C Sample Nagios Templates A-3

Appendix D Sample Anomaly Detection Configuration A-4

Appendix E Sample Anomaly Detection Report A-5

v

1 Introduction

The High Energy Physics Research Computing Group (HEPRC) is a research group within the University of

Victoria’s Physics and Astronomy Department that manages cloud computational resources for high energy

physics projects such as the ATLAS [1] experiment at CERN and Belle II [2] at the KEK Laboratory in

Japan. In particular, their cloudscheduler [3] software automatically provisions virtual machines on

private and public clouds to run computational workloads specified by the projects. In their daily operations,

the HEPRC group manages a significant number of computer instances—both physical and virtual—with

bespoke configurations.

1.1 Problem definition

Although the HEPRC group has monitoring functionality in place for the individual systems within their

infrastructure, which makes it possible to detect failures in those components, the separation of these metrics

makes it difficult to detect smaller errors that cannot be readily observed when looking at these systems in

isolation. A centralized monitoring solution that can be deployed to all machines in their infrastructure is

therefore proposed and implemented in order to make it easier to visualize and compare the metrics in one

central location. In addition, an anomaly detection system is created in order to automate the detection of

errors that are currently detected manually and to leverage machine learning approaches in order to find

hidden patterns that are difficult for system administrators to detect in the data.

1.2 Requirements

The most important characteristics that a monitoring solution should possess were identified to be the ability

to:

1. Be deployed to any of the machines in the HEPRC infrastructure

2. Make the following data available to administrators:

(a) System metrics and performance data in a graphable time series format

(b) State information on key processes

(c) Security information such as the number of active remote connections

1

3. Detect anomalous behaviour and alert administrators when their attention is required

4. Display graphs of time series data in the web interface

5. Allow the collection of custom metrics

6. Allow the dynamic adding and removal of monitored hosts

7. Scale as the monitoring needs of the infrastructure grow.

Another design consideration was the method in which metrics are collected over the network. Since some

machines may be part of a private subnet that the monitoring server cannot access directly, it was decided

that the monitored hosts must send metric data to the server without the server needing to explicitly establish

a connection to the monitored hosts. This shall be referred to as passive data collection.

2 Monitoring Infrastructure

As the number of machines that are required to be functional in an infrastructure increases, ensuring their

correct and consistent operation becomes difficult. To that end, organizations like CERN employ software

to collect and report operational data from running machines to a centralized location where it may be

visualized for system administrators [4]. Commonly, such systems also have provisions for detecting and

reporting anomalous behavior to administrators so that they can investigate the source of the problem and

undertake corrective action if required.

2.1 Options considered

Due to the importance of capable monitoring systems to organizations that utilize many machines, there

exist a multitude of different software packages designed to solve this problem. However, many of them do

not fully meet the requirements defined in §1.2 and are thus not ideal for the HEPRC infrastructure. As such,

a candidate set of software was identified for preliminary consideration during the initial research phase.

2.1.1 Cacti

Cacti [5] is a monitoring framework that uses RRDtool [6] and the MariaDB [7] relational database for time

series data storage and graphing. It is based on the LAMP (Linux, Apache, MySQL & PHP) [8, 9, 10] web

2

server stack and is commonly used to monitor network traffic [11]. Cacti also provides a high performance

multi-threaded data collector, Spine, written in C, that can scale to a larger number of hosts then the default

cmd.php poller [12]. Cacti also has the ability to send alerts based on thresholds using the thold [13]

plugin. However, Cacti is primarily designed to collect data by polling the monitored machines directly,

which is not ideal for the HEPRC’s application.

2.1.2 Munin

Similar to Cacti, Munin [14] is also a network resource monitoring tool that functions as a frontend to

RRDtool. It is written in Perl [15] and is “designed to be very plug and play” [14]. Munin collects data

by connecting to an agent, munin-node, installed on the monitored host at set intervals [16]. Additionally,

Munin has the ability to send alerts, or integrate with software such as Nagios (evaluated in §2.1.7) for this

functionality. However, since the Munin server must connect to the monitored node by default, this solution

does not fulfill the requirements.

2.1.3 Prometheus

Prometheus [17] is a monitoring system built by SoundCloud in 2012, which has since become an inde-

pendent open source project [18]. It is written in Go [19], and designed to work well with purely numeric

time series data and to value reliability over accuracy. Metrics are gathered by polling exporters installed

on the machines, and Prometheus functions as the database [20]. The data can then be visualized by the

Grafana [21] dashboard software. Alerts can also be triggered in Prometheus and sent using Alertmanager

[22]. Since Prometheus is exclusively designed for numeric data and uses an active model of data collection,

it does not fit the requirements.

2.1.4 ELK Stack

The Elasticsearch, Logstash and Kibana (also known as the Elastic) stack [23] is a collection of software

used primarily for log management and analytics [24]. Logstash ingests and transforms data from multiple

sources, Elasticsearch stores and indexes the data and Kibana queries Elasticsearch to visualize the data

[23]. Logging numeric time series data is possible with Metricbeat [25], a data shipper that can be used

3

to send data to Logstash for processing. It can also send data to Elasticsearch directly, which reduces the

required performance overhead. Alerting can be set up using Kibana [26]. However, this application does

not leverage the full power of Elasticsearch, since it is primarily built as full-text document search engine

rather than a time series database.

2.1.5 Zabbix

Zabbix [27] is a system monitoring tool for IT components that stores data in a MariaDB SQL database.

Zabbix has a more modern web interface compared to the other options considered, and provides a “batteries

included” monitoring experience. Zabbix supports graphing time series data, notifications and host auto-

discovery without the need for any other software [28]. Data is collected from the machines using the

Zabbix Agent, which supports both active and passive data transmission1 [29]. Zabbix is completely

configured from the web interface and does not require any manual editing of config files. However, due to

all of this integrated functionality, the Zabbix server may run slower than the alternatives. Since it appears

to fit all of the requirements, Zabbix was one of the solutions selected for further testing.

2.1.6 Ganglia

Ganglia [30] is grid monitoring solution with robust support for gathering metrics at scale. Data is gathered

using the resident gmond agent that is installed on the hosts. The gmond instance will send data to a gmetad

instance, which then stores and graphs the data using the RRDtool time series database. The data can

then be displayed using the ganglia-web (or gweb) PHP-based web interface. Multiple host instances can

be arranged into a grids, and multiple grids can then be arranged into clusters. The Ganglia monitoring

daemon gmond is available in the CentOS and many other Linux distributions’ repositories, which makes

it very easy to install. Custom metrics can be added using gmetric, but many of the most important

metrics are available by default without any configuration required. It is dynamic, and allows the adding or

removal of hosts without any additional configuration on the server. These aspects make Ganglia ideal for

the HEPRC’s infrastructure. Although Ganglia has no built-in support for notifications or alerts of any kind,

it can integrate with other software such as Nagios that can provide this functionality.

1Zabbix defines “active” and “passive” from the perspective of the agent rather than the server, so “active” refers to what was
defined as passive data collection in §1.2.

4

2.1.7 Nagios

Nagios Core [31] is an open source monitoring and alerting system for IT infrastructure written in C. Nagios

only provides alerting functionality by default, but is built to incorporate plugins that allow it to collect data

from monitoring sources. Nagios performs checks to determine the state of the objects that it is monitoring

such as hosts and services. These checks can be active, where Nagios performs the check by itself, or

passive, where it processes checks submitted by external applications [32, 33]. Depending on the result

of the check, Nagios will schedule the next check and alert an administrator if there is an error. Although

Nagios does not have any way to store time series data or create graphs, plugins such as PNP4Nagios

[34] enable this functionality by storing data in RRD files like many of the other solutions considered do.

Although Nagios must be aware of all of the hosts that it is monitoring, which makes difficult to add and

remove hosts dynamically, this can be solved by integrating it with a dynamic system such as Ganglia.

2.2 Possible configurations

Out of the many options under consideration, Zabbix, Ganglia, and Nagios were selected for further testing

as they were the best fit for the requirements. While Ganglia and Nagios do not fully meet the criteria on

their own, it is possible to integrate them together so that they cover each other’s shortcomings.

In order to verify these software options in relation to the HEPRC group’s requirements, several different

configurations were created in an OpenStack [35] environment and subsequently evaluated. These systems

were configured to monitor the test set of metrics and alerts outlined in Table 1.

Table 1: Test metrics and alerts.

Time Series with Graphs Alerts / Reports
RAM usage Swap usage > 50%
Swap usage Disk usage > 90%

CPU usage (%) SSH login from an unrecognized network
System load Service httpd not running
Disk usage Service sshd not running

Network bytes (in/out)
Network packages (in/out)

5

2.2.1 Zabbix Standalone

Testing Zabbix revealed that the Zabbix Agent that was installed onto the monitored hosts used more system

resources than the agents for other options available, which is not ideal for many of the machines in the

HEPRC infrastructure, especially the cloud worker nodes. In addition, configuring the Zabbix server to fit

the HEPRC’s needs was more difficult than the other options considered, because the flexibility allowed by

the web interface was limited. The server itself was slower as well. Finally, this solution requires a separate

SQL database to be installed and running at all times, while the other solutions use RRDtool, which does

not need to be running constantly in the background as a daemon.

2.2.2 Nagios with PNP4Nagios

Nagios was tested with the PNP4Nagios plugin for manipulating time series data. Although this solution

allows Nagios to be used standalone, there is no easily-deployable agent with a small performance footprint

that could be used for this application. To make this system functional, a monitoring agent that sends data

using the NCSA plugin would likely need to be written from scratch. Host management would also be

difficult since Nagios ignores service checks for hosts that it does not know of beforehand.

2.2.3 Nagios with Ganglia Independent

Testing Ganglia independently from Nagios covers the shortcomings of both pieces of software, however

it requires two different agents to be installed on each machine since Nagios cannot use the data collected

by Ganglia. This also does not mitigate the issue with creating the agent that can send data passively to the

monitoring server, nor the issue of adding hosts dynamically.

2.2.4 Nagios with Ganglia Integration

In this configuration, Ganglia is used exclusively to collect and display the data, which makes it simple to

deploy the agent to the machines. It then makes this data available to Nagios. This way, Nagios can actively

check the Ganglia server for the metrics that it requires, and send out notifications if something goes wrong.

Although scripts to support this sort of integration come packaged with the gweb, additional custom scripts

6

may be required depending on the application. This combination makes the most practical sense because

only one agent is needed to be installed on host systems to enable monitoring.

2.3 Final system design

Figure 1: Diagram of monitoring system.

In the finalized system, shown in Figure 1, Ganglia’s gmond and gmetric monitoring agents are deployed

to hosts that require monitoring. Metric information is thus sent to a collector gmond instance through XDR

over UDP. The gmetad service on the monitoring server will then poll the collector gmond over TCP to

gather the metrics and write them to Round Robin Database (RRD) files on the monitoring server. When

the Ganglia web interface requires graphs to be generated, it requests them from RRDtool. Users can then

visualize the data in the web interface as shown in Figure 2, and Nagios can access the current metric

information from gweb. If Nagios detects a metric with a value that is over the predefined threshold, it will

alert the user by sending an email. The services that Nagios is monitoring can also be viewed in its web

interface as seen in Figure 3.

7

Figure 2: Ganglia web interface showing overview of the HEPRC grid.

Figure 3: Nagios web interface showing services.

8

Each logical group of hosts with similar functions or network topology is organized into a cluster. One single

gmond instance in the cluster is designated as the collector gmond, whereas the remainder of the machines

report metrics to it. Multiple clusters are organized into grids. This mitigates the limitation that each cluster

can include no more than 2000 monitored hosts [30]. Since each gmetad instance is accompanied by a gweb

component, a central gmetad instances that oversees the whole system will poll only summary statistics

from the grids, and details can be further investigated by visiting the web page associated with the specific

grid [36]. Using the structure shown in Figure 4, the system can be made to scale to a large number of hosts.

Figure 4: Diagram of the scalability of the monitoring system.

In addition to the metrics gathered by Ganglia by default, the system must collect information on the number

of unauthorized users connected via SSH and state information on running processes. To enable this, Ganglia

has two separate methods of adding custom metrics. First, custom metrics can be added as Python [37]

modules. However, this feature is only compatible with Python 2, which has hit end of life as of January

1, 2020 [38]. Therefore, gmetric is used instead. A shell script, listed in Appendix A, is run at regular

intervals via cron and invokes gmetric to send a custom metrics to the monitoring server. The processes

that are monitored are stored in a configuration file.

9

configurations/

heprc.uvic.ca

bellecs.cfg

csv2a.cfg

csv2.cfg

default.cfg

dynafed02.cfg

phys.uvic.ca

default.cfg

other

default.cfg

Figure 5: Sample configuration directory structure.

2.4 Deployment

During deployment, several steps must be completed:

1. The gmond daemon must be installed and configured on the target machine

2. The custom process monitoring script along with the configuration file containing the processes to
monitor must be sent the machine

3. The gmond daemon must be started and the custom script must be configured to run at predefined
intervals.

To deploy the monitoring system to machines in the HEPRC infrastructure, a script (listed in Appendix

B) was developed to perform all steps necessary for remote installation over SSH. Since each monitored

machine has different processes that are critical to its operation, a configuration file must first be created

that defines these processes. These configurations files are stored in a directory structure similar to the one

listed in in Figure 5. The directories represent the domain names of the hosts, while the .cfg files represent

the specific hosts. If the domain of the new server is known, it will load the appropriate domain/host.cfg

file in that directory if it exists as well as the domain/default.cfg. If the domain name is not known,

other/default.cfg will be used. During deployment, the script will send this information to the target

machine. Finally, Nagios must also be aware of this configuration, thus the configuration directory structure

must be synced with the monitoring server.

New servers added to the Nagios configuration are built up from the host configuration files such as

those shown in Figure 6 using a set of templates that are listed in Appendix C. The first section defines the

processes that need to be monitored, while the second defines alerts based on a metric name, an operator, and

10

[PROCESS]

sshd

condor_poller

condor_master

[COMMAND]

part_max_used!more!90 Disk Usage

Swap_Usage!more!50 Swap Usage

Unknown_SSH_Connections!notequal!0 Foreign SSH Connections

Figure 6: Sample host configuration file.

a threshold. This system makes it possible to set the configuration for both the custom Ganglia monitoring

script on the host machine and Nagios on the monitoring server in one place.

2.5 Host management

Nagios is only aware of hosts that are explicitly specified in its configuration files and must be restarted

for hosts to be added or removed. However, Ganglia is able to add and remove hosts from its monitoring

system dynamically. Therefore, a set of tools was developed in order to make the process of syncing hosts

between Ganglia and Nagios simple and automated. These tools consist of PHP files which integrate into

the Nagios web interface to add and remove hosts, as well as shell scripts that query a custom Ganglia

extension, requestv2, that was written to provide API-level access to information stored in Ganglia over

HTTP. Hence, the hosts that are currently in Ganglia but not in Nagios can be added using the configuration

files that were sent from the deployment server.

3 Anomaly Detection

Although Nagios can send an alert when something is going wrong, these simple state-based and threshold-

based alerts may not catch all instances of host behaviour that deviate from the norm. Since Nagios only

checks one metric at a time, it cannot detect complex anomalies that involve multiple metrics. Additionally,

a large amount of data is collected by the monitoring system, and unless an administrator knows specifically

what to look at, there is a large possibility that critical faults can go undetected. Formal anomaly detection

techniques are therefore the ideal candidate to use to report such occurrences to system administrators.

11

3.1 Background

Anomaly detection in this case involves creating a decision function that, given a k-dimensional data point

where k is the number of metrics, can generate an anomaly score (where a higher value is considered more

anomalous). A binary prediction function can then be defined to take a threshold value, and label any scores

above the threshold as outliers, and the rest as inliers. The threshold is calculated based on the contamination

(proportion of outliers) of the training data [39]. For models that can model the temporal dimension, such as

some machine learning models, data will be provided in the form of Multivariate Temporal Windows, which

are k×w matrices where k is the number of metrics and w is the number of data points for each metric [40].

For traditional models that are not able to represent time, the window is extended into a k ·w-dimensional

vector, however part of the correlation is lost in this transformation [40].

In the case of monitoring machines in a data center or otherwise, anomalies are deviations in the be-

haviour of a machine based on previous performance data generated by the machine itself or similar ma-

chines in the infrastructure. This can be achieved by applying either traditional algorithms such as IForest

[41], or machine learning algorithms such as LSTM Autoencoders [42].

3.2 Anomaly detection in the CERN infrastructure

The CERN infrastructure has a similar problem to the one described above, albeit at a larger scale. In [40],

CERN machines are described as either part of the “batch” or “shared” dataset. These distinctions indicate

primarily the regularity of load experienced, where “shared” machines have a more sporadic load profile

then “batch” machines do. The machines are further organized into host groups, with the assumption that

machines that are in the same host group will have similar performance characteristics. Thus, one week of

training data is gathered over several performance metrics for all machines in a particular host group. The

data is then normalized by coefficients calculated for all of the data per metric in the given host group. Next,

a detection model is trained on this data. Finally, the model can now be used to generate predictions.

3.3 Anomaly detection in the HEPRC infrastructure

Since the HEPRC’s monitoring system is different then the one used in CERN, the same data preparation

pipeline cannot be used. A new system was therefore created as seen in Figure 7.

12

Figure 7: Diagram of the HEPRC anomaly detection system.

3.3.1 Data preparation

Data is gathered directly from the RRD files that store the time series data on the monitoring server using

requestv2, a custom extension to gweb that provides access to the time series data given a cluster, host

name, list of metrics, start and end times, as well as the mean aggregation resolution. By default, the RRD

files created with Ganglia are mean aggregated in stages: first over 15 seconds, then 1 minute and finally

10 minutes. This makes it convenient to gather data at 10 minute intervals as is done in the original paper

without any additional processing required. This way, there are 144 data points generated per metric per day

for each host.

Since most of the machines in the HEPRC infrastructure are not explicitly sorted into hostgroups as

they are in CERN2, training data must be gathered per host rather than per host group. The training interval

is typically set at one week before the day that the inference will be performed on, however the system

supports variable-length training intervals as well as setting a fixed interval where it is clear that the machine

was performing as expected. This, along with the set of metrics to gather for each host are defined in the

2Other than the cloud worker nodes, which may have more self-similar behaviour.

13

configuration file listed in Appendix D. The data for the training interval is normalized by metric, then split

into overlapping 8 hour (48 data point) long windows, one starting at each data point.

3.3.2 Model training

In [40], the IForest model from the PyOD [43] module scores highest when tested on the “Batch” dataset,

whereas the AutoEncoder LSTM model implemented in [42] scored the highest in the “Shared” dataset.

Therefore, the system created has the capability to use either of these models, as well as any model that

implements the PyOD BaseDetector API. The model used is specified in the configuration file. One

model per host is then trained on the processed training data and saved.

3.3.3 Inference and reporting

Figure 8: Sample plot of anomalous host.

14

Finally, data can be gathered for the day that will be predicted on. If day has passed, then all 3 of the non-

overlapping 8 hour windows are available for inference. Otherwise, the system will use as many windows

as are currently available. Applying the model to the inference data per host creates a report such as the one

shown in Appendix E. If any hosts present as anomalous during the inference period, a plot is generated

from the training and inference data that indicates in which window the anomaly has occurred as shown in

Figure 8. The report and plots are then sent as an email to the primary contact in the configuration. When a

system administrator receive this report, they are able to determine at a glance what the issue may be from

the graph and take action if needed.

4 Conclusions

After considering many different software solutions for the remote monitoring of the HEPRC infrastructure

and creating several test configurations, a system that integrated both Nagios and Ganglia was determined

to be the best fit. A set of custom tools were developed to integrate the two together and the system was

deployed. Complementary to the alerting provided by Nagios, a system that leverages anomaly detection

algorithms and machine learning to automatically detect complex anomalies and alert administrators was

created based on the work done at CERN.

5 Future Work

Now that this monitoring system as been established, more hosts can be added, especially more cloud worker

nodes. In addition, more custom metrics can be sent to Ganglia so that relevant aspects of software running

on the HEPRC infrastructure can be monitored. Additional work can also be done on the anomaly detection

system in order to increase the prediction accuracy. One method to accomplish this would be to create

a labelled validation dataset that can be used to objectively evaluate different models, choices of metrics,

hyperparameters, as well as different strategies for selecting training periods. Since the HEPRC’s use case

is ultimately different from the one at CERN, separate testing must be done.

Finally, using application-specific metrics such as those provided by HTCondor [44] would give more

insight into the state of the applications that are currently running on the host, which may improve the

15

anomaly detection’s system ability to identify outliers.

Acknowledgements

I would like to sincerely thank Marcus Ebert, Colson Driemel and the other members of the HEPRC group

for their support and mentorship during this work term.

16

References

[1] CERN, “The ATLAS Experiment,” ATLAS Experiment. [Online]. Available: https://atlas.cern/about/
[Accessed Dec. 14, 2021].

[2] DESY, “Belle II,” Belle II. [Online]. Available: https://www.belle2.org/ [Accessed Dec. 14, 2021].

[3] F. Berghaus, K. Casteels, C. Driemel, M. Ebert, F. F. Galindo, C. Leavett-Brown, D. MacDonell,
M. Paterson, R. Seuster, R. J. Sobie, S. Tolkamp, and J. Weldon, “High-throughput cloud computing
with the cloudscheduler vm provisioning service,” Computing and Software for Big Science, vol. 4,
no. 1, p. 4, Feb. 2020. [Online]. Available: https://doi.org/10.1007/s41781-020-0036-1

[4] A. Aimar, A. A. Corman, P. Andrade, J. D. Fernandez, B. G. Bear, E. Karavakis, D. M. Kulikowski, and
L. Magnoni, “Monit: Monitoring the cern data centres and the wlcg infrastructure,” EPJ Web Conf.,
vol. 214, p. 08031, Sept. 2019. [Online]. Available: https://doi.org/10.1051/epjconf/201921408031

[5] The Cacti Group, Inc., “About Cacti,” Cacti. [Online]. Available: https://www.cacti.net/ [Accessed
Dec. 10, 2021].

[6] T. Oetiker, “About RRDtool,” RRDtool logging & graphing. [Online]. Available: https:
//oss.oetiker.ch/rrdtool/ [Accessed Dec. 10, 2021].

[7] MariaDB Foundation, “MariaDB Server: The open source relational database,” MariaDB. [Online].
Available: https://mariadb.org/ [Accessed Dec. 10, 2021].

[8] Apache, “Apache HTTP Server Project,” Apache HTTP Server Project. [Online]. Available:
https://httpd.apache.org/ [Accessed Dec. 13, 2021].

[9] Oracle Corporation, “MySQL,” MySQL. [Online]. Available: https://www.mysql.com/ [Accessed
Dec. 13, 2021].

[10] The PHP group, “PHP,” PHP. [Online]. Available: https://www.php.net/ [Accessed Dec. 13, 2021].

[11] The Cacti Group, Inc., “What is Cacti?” Cacti. [Online]. Available: https://www.cacti.net/info/cacti
[Accessed Dec. 10, 2021].

[12] The Cacti Group, Inc., “Spine Information,” Cacti. [Online]. Available: https://www.cacti.net/info/
spine [Accessed Dec. 10, 2021].

[13] Cacti, Thold GitHub repository. [Online]. Available: https://github.com/Cacti/plugin thold [Accessed
Dec. 10, 2021].

[14] The Munin Project, “What is Munin?” Munin. [Online]. Available: https://munin-monitoring.org/
[Accessed Dec. 10, 2021].

[15] The Perl Foundation, “Perl,” Perl. [Online]. Available: https://www.perl.org/ [Accessed Dec. 13,
2021].

[16] The Munin Project, “Munin’s Architecture,” Munin. [Online]. Available: http:
//guide.munin-monitoring.org/en/latest/architecture/index.html [Accessed Dec. 11, 2021].

17

https://atlas.cern/about/
https://www.belle2.org/
https://doi.org/10.1007/s41781-020-0036-1
https://doi.org/10.1051/epjconf/201921408031
https://www.cacti.net/
https://oss.oetiker.ch/rrdtool/
https://oss.oetiker.ch/rrdtool/
https://mariadb.org/
https://httpd.apache.org/
https://www.mysql.com/
https://www.php.net/
https://www.cacti.net/info/cacti
https://www.cacti.net/info/spine
https://www.cacti.net/info/spine
https://github.com/Cacti/plugin_thold
https://munin-monitoring.org/
https://www.perl.org/
http://guide.munin-monitoring.org/en/latest/architecture/index.html
http://guide.munin-monitoring.org/en/latest/architecture/index.html

[17] Prometheus, “From metrics to insight,” Prometheus. [Online]. Available: https://prometheus.io/
[Accessed Dec. 10, 2021].

[18] Prometheus, “What is Prometheus?” Prometheus. [Online]. Available: https://prometheus.io/docs/
introduction/overview/ [Accessed Dec. 10, 2021].

[19] Google, “Go,” Go. [Online]. Available: https://go.dev/ [Accessed Dec. 13, 2021].

[20] Prometheus, “Exporters and integrations,” Prometheus. [Online]. Available: https://prometheus.io/
docs/instrumenting/exporters/ [Accessed Dec. 13, 2021].

[21] Grafana Labs, “Grafana,” Grafana. [Online]. Available: https://grafana.com/grafana/ [Accessed Dec.
10, 2021].

[22] Prometheus, “Alertmanager,” Prometheus. [Online]. Available: https://prometheus.io/docs/alerting/
latest/alertmanager/ [Accessed Dec. 13, 2021].

[23] Elastic NV, “What is the ELK Stack?” Elastic. [Online]. Available: https://www.elastic.co/what-is/
elk-stack [Accessed Dec. 13, 2021].

[24] Amazon, “The ELK stack,” Amazon Web Services. [Online]. Available: https://aws.amazon.com/
opensearch-service/the-elk-stack/ [Accessed Dec. 13, 2021].

[25] Elastic NV, “Metricbeat overview,” Elastic. [Online]. Available: https://www.elastic.co/guide/en/
beats/metricbeat/current/metricbeat-overview.html [Accessed Dec. 13, 2021].

[26] Elastic NV, “Alerting,” Elastic. [Online]. Available: https://www.elastic.co/what-is/kibana-alerting
[Accessed Dec. 13, 2021].

[27] Zabbix LLC., “Zabbix,” Zabbix. [Online]. Available: https://www.zabbix.com/ [Accessed Dec. 12,
2021].

[28] Zabbix LLC., “What is Zabbix,” Zabbix. [Online]. Available: https://www.zabbix.com/documentation/
current/en/manual/introduction/about [Accessed Dec. 13, 2021].

[29] Zabbix LLC., “Zabbix Agent,” Zabbix. [Online]. Available: https://www.zabbix.com/zabbix agent
[Accessed Dec. 13, 2021].

[30] What is Ganglia, “Ganglia Monitoring System,” Ganglia Monitoring System. [Online]. Available:
http://ganglia.sourceforge.net/ [Accessed Dec. 13, 2021].

[31] Nagios Enterprises, “Nagios Core,” Nagios. [Online]. Available: https://www.nagios.org/projects/
nagios-core/ [Accessed Dec. 13, 2021].

[32] Nagios Enterprises, “Active Checks,” Nagios. [Online]. Available: https://assets.nagios.com/
downloads/nagioscore/docs/nagioscore/3/en/activechecks.html [Accessed Dec. 13, 2021].

[33] Nagios Enterprises, “Passive Checks,” Nagios. [Online]. Available: https://assets.nagios.com/
downloads/nagioscore/docs/nagioscore/3/en/passivechecks.html [Accessed Dec. 13, 2021].

[34] J. Linge, “PNP4Nagios Documentation,” PNP4Nagios. [Online]. Available: http://docs.pnp4nagios.
org/start [Accessed Dec. 13, 2021].

18

https://prometheus.io/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://go.dev/
https://prometheus.io/docs/instrumenting/exporters/
https://prometheus.io/docs/instrumenting/exporters/
https://grafana.com/grafana/
https://prometheus.io/docs/alerting/latest/alertmanager/
https://prometheus.io/docs/alerting/latest/alertmanager/
https://www.elastic.co/what-is/elk-stack
https://www.elastic.co/what-is/elk-stack
https://aws.amazon.com/opensearch-service/the-elk-stack/
https://aws.amazon.com/opensearch-service/the-elk-stack/
https://www.elastic.co/guide/en/beats/metricbeat/current/metricbeat-overview.html
https://www.elastic.co/guide/en/beats/metricbeat/current/metricbeat-overview.html
https://www.elastic.co/what-is/kibana-alerting
https://www.zabbix.com/
https://www.zabbix.com/documentation/current/en/manual/introduction/about
https://www.zabbix.com/documentation/current/en/manual/introduction/about
https://www.zabbix.com/zabbix_agent
http://ganglia.sourceforge.net/
https://www.nagios.org/projects/nagios-core/
https://www.nagios.org/projects/nagios-core/
https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/3/en/activechecks.html
https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/3/en/activechecks.html
https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/3/en/passivechecks.html
https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/3/en/passivechecks.html
http://docs.pnp4nagios.org/start
http://docs.pnp4nagios.org/start

[35] The OpenStack Project, “OpenStack,” OpenStack. [Online]. Available: https://www.openstack.org/
[Accessed Dec. 10, 2021].

[36] M. Massie, B. Li, B. Nicholes, V. Vuksan, R. Alexander, J. Buchbinder, F. Costa, A. Dean, D. Joseph-
sen, P. Phaal, and D. Pocock, Monitoring with Ganglia: Tracking Dynamic Host and Application
Metrics at Scale. O’Reilly Media, Nov. 2012.

[37] Python Software Foundation, “Python,” Python. [Online]. Available: https://www.python.org/
[Accessed Dec. 13, 2021].

[38] Python Software Foundation, “Sunsetting Python 2,” Python. [Online]. Available: https:
//www.python.org/doc/sunset-python-2/ [Accessed Dec. 10, 2021].

[39] Y. Zhao, “All Models,” PyOD Documentation. [Online]. Available: https://pyod.readthedocs.io/en/
latest/pyod.models.html [Accessed Dec. 13, 2021].

[40] D. Giordano, M. Paltenghi, S. Metaj, and A. Dvorak, “Anomaly detection in the cern
cloud infrastructure,” EPJ Web Conf., vol. 251, p. 02011, 2021. [Online]. Available: https:
//doi.org/10.1051/epjconf/202125102011

[41] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation-based anomaly detection,” ACM Trans. Knowl.
Discov. Data, vol. 6, no. 1, Mar. 2012. [Online]. Available: https://doi.org/10.1145/2133360.2133363

[42] M. Paltenghi, “Time Series Anomaly Detection for CERN Large-Scale Computing Infrastructure,” M.
S. thesis, Politecnico di Milano, Milan, Italy, 2020. [Online]. Available: https://cds.cern.ch/record/
2752641

[43] Y. Zhao, Z. Nasrullah, and Z. Li, “Pyod: A python toolbox for scalable outlier detection,”
Journal of Machine Learning Research, vol. 20, no. 96, pp. 1–7, 2019. [Online]. Available:
http://jmlr.org/papers/v20/19-011.html

[44] University of Wisconsin–Madison, “Computing with HTCSS,” HTCondor Software Suite. [Online].
Available: https://research.cs.wisc.edu/htcondor/ [Accessed Dec. 12, 2021].

19

https://www.openstack.org/
https://www.python.org/
https://www.python.org/doc/sunset-python-2/
https://www.python.org/doc/sunset-python-2/
https://pyod.readthedocs.io/en/latest/pyod.models.html
https://pyod.readthedocs.io/en/latest/pyod.models.html
https://doi.org/10.1051/epjconf/202125102011
https://doi.org/10.1051/epjconf/202125102011
https://doi.org/10.1145/2133360.2133363
https://cds.cern.ch/record/2752641
https://cds.cern.ch/record/2752641
http://jmlr.org/papers/v20/19-011.html
https://research.cs.wisc.edu/htcondor/

Appendix A Custom Metric Script

Figure 9 lists the script to send custom metrics from the monitored hosts using gmetric.

#!/usr/bin/env bash

METRIC_TTL=905

PROC_CFG=/etc/ganglia/host.cfg

ssh_whitelist=('uvic.ca')

Commands to gather metrics

proc_verify() {

if [$(ps axf|grep -c "$1") -gt 1];then echo "True"

else echo "False" ; fi

}

check_ssh_connections() {

unknown=0

for host in $(last -w | grep "still logged in" | awk '{print $3}' | uniq);

do

hostname=$(getent hosts $host | awk '{print tolower($2)}')

[[$hostname =~ ^.*($ssh_whitelist)$]] || unknown=$((unknown+1))

done

echo $unknown

}

SWAP_PERCENT=$(free -t | grep -i swap|awk '{if ($2 + 0 != 0) {print $3/$2*100} else {print 0}}')

TYPES: string|int8|uint8|int16|uint16|int32|uint32|float|double

gmetric -n 'Swap_Usage' -v $SWAP_PERCENT -t 'uint16' -u '%' -d $METRIC_TTL

gmetric -n 'Unknown_SSH_Connections' -v $(check_ssh_connections) -t 'uint16' -u 'Connections' -d

$METRIC_TTL↪→

while read proc ; do

if [$proc != ""];

then

gmetric -n $proc'_service_running' -v $(proc_verify $proc) -t 'string' -u '' -d $METRIC_TTL

fi

done < $PROC_CFG

Figure 9: Custom metric script.

A-1

Appendix B Deployment Script

Figure 10 lists the script used to deploy Ganglia monitoring to new hosts.

#!/usr/bin/env bash

host=$1

domain=$2

port=$3

user=$4

if ["$#" -ne 4] ; then echo "USAGE: deploy_ganglia.sh hostname domain port user" && exit 1 ; fi

Send configuration files/scripts to remote host

scp -P$port gmond.conf monitor.sh $user@$host.$domain:/tmp

Process config file

awk '/\[PROCESS\]/{flag=1;next}/\[COMMAND\]/{flag=0}flag' configurations/$domain/$host.cfg | ssh

-p$port $user@$host.$domain "cat > /tmp/$host.cfg"↪→

Run installation

ssh -tt -p$port $user@$host.$domain "sudo yum -y install epel-release; sudo yum -y install

ganglia-gmond ganglia-gmond-python; sudo mv /tmp/gmond.conf /tmp/monitor.sh /tmp/host.cfg

/etc/ganglia; sudo chmod +x /etc/ganglia/monitor.sh; echo \"echo '*/5 * * * * root /bin/sh

/etc/ganglia/monitor.sh' > /etc/cron.d/ganglia\"|sudo bash; sudo service gmond restart gmond;

sudo systemctl enable gmond; sudo /etc/ganglia/monitor.sh &>/dev/null;"

↪→

↪→

↪→

↪→

Send config file to nagios server

r_ip=? # Replace "?" with ip of nagios server

r_user=? # Replace "?" with username on nagios server

r_port=22

rsync -crpz -e "ssh -p$r_port" configurations $r_user@$r_ip:/etc/nagios

exit 0

Figure 10: Deployment script.

A-2

Appendix C Sample Nagios Templates

Figures 11, 12, and 13 list the templates used to generate new Nagios object configuration files.

define host {

use ganglia-linux-host

host_name {{HOSTNAME}}

address {{HOSTADDR}}

}

Figure 11: Generic host template.

define service {

use ganglia-service

name {{HOSTNAME}}-{{METRIC}}

description {{DESCRIPTION}}

check_command check_ganglia_metric!{{ARGSTR}}

host_name {{HOSTNAME}}

}

Figure 12: Generic service template.

define service {

use ganglia-service

name {{SERVICE}}-{{HOSTNAME}}

description {{SERVICE}} Service Running

check_command check_ganglia_metric!{{SERVICE}}_service_running!notequal!'True'
host_name {{HOSTNAME}}

}

Figure 13: Generic process template.

A-3

Appendix D Sample Anomaly Detection Configuration

Figure 14 lists a sample configuration file for the anomaly detection system.

[config]

monitor_server http://206.12.154.221/ganglia/

detector pyod.models.iforest.IForest

admin_email vkamel@uvic.ca

max_workers 2 # Number of parallel processes to start

train_days 7 # Number of days to train on

[model] # Model hyperparameters (IForest)

n_estimators 300

contamination 0.05

verbose 1

max_samples 'auto'
max_features 1.0

random_state 3393

[manifest]

Cluster Hostname Metrics

infrastructure dynafed02.heprc.uvic.ca cpu_system,cpu_user,load_fifteen,pkts_in,mem_free

infrastructure csv2a.heprc.uvic.ca cpu_system,cpu_user,load_fifteen,pkts_in,mem_free

infrastructure csv2-dev2.heprc.uvic.ca cpu_system,cpu_user,load_fifteen,pkts_in,mem_free

infrastructure bellecs.heprc.uvic.ca cpu_system,cpu_user,load_fifteen,pkts_in,mem_free

infrastructure ganglia.heprc.uvic.ca cpu_system,cpu_user,load_fifteen,pkts_in,mem_free

infrastructure shoal.heprc.uvic.ca cpu_system,cpu_user,load_fifteen,pkts_in,mem_free

Figure 14: Anomaly detection configuration.

A-4

Appendix E Sample Anomaly Detection Report

Figure 15 lists a sample report generated by the anomaly detection system.

NOTICE

Anomalies have been detected in the following hosts:

- csv2a.heprc.uvic.ca

(http://206.12.154.221/ganglia/?c=infrastructure&h=csv2a.heprc.uvic.ca&r=week)

- csv2-dev2.heprc.uvic.ca

(http://206.12.154.221/ganglia/?c=infrastructure&h=csv2-dev2.heprc.uvic.ca&r=week)

- ganglia.heprc.uvic.ca

(http://206.12.154.221/ganglia/?c=infrastructure&h=ganglia.heprc.uvic.ca&r=week)

URL of Ganglia monitoring server: http://206.12.154.221/ganglia/

Report for day: 2021-11-25

Generated: 2021-12-07 07:53:34

Generated by: heplw67.phys.uvic.ca

Windows:

1 = 00:00:00 to 08:00:00, 2 = 08:00:00 to 16:00:00, 3 = 16:00:00 to 24:00:00

HOST: dynafed02.heprc.uvic.ca

Window 1: P(Outlier) = 24.0 % Thresh = 0.0 Score = -0.23967 Verdict: OK

Window 2: P(Outlier) = 55.1 % Thresh = 0.0 Score = -0.12573 Verdict: OK

Window 3: P(Outlier) = 50.6 % Thresh = 0.0 Score = -0.14218 Verdict: OK

HOST: csv2a.heprc.uvic.ca

Window 1: P(Outlier) = 100.0 % Thresh = 0.0 Score = 0.04880 Verdict: Anomaly

Window 2: P(Outlier) = 100.0 % Thresh = 0.0 Score = 0.05061 Verdict: Anomaly

Window 3: P(Outlier) = 100.0 % Thresh = 0.0 Score = 0.11097 Verdict: Anomaly

HOST: csv2-dev2.heprc.uvic.ca

Window 1: P(Outlier) = 90.8 % Thresh = 0.0 Score = -0.00249 Verdict: OK

Window 2: P(Outlier) = 100.0 % Thresh = 0.0 Score = 0.11603 Verdict: Anomaly

Window 3: P(Outlier) = 100.0 % Thresh = 0.0 Score = 0.05279 Verdict: Anomaly

HOST: bellecs.heprc.uvic.ca

Window 1: P(Outlier) = 35.5 % Thresh = 0.0 Score = -0.10987 Verdict: OK

Window 2: P(Outlier) = 75.7 % Thresh = 0.0 Score = -0.01728 Verdict: OK

Window 3: P(Outlier) = 60.8 % Thresh = 0.0 Score = -0.05162 Verdict: OK

HOST: ganglia.heprc.uvic.ca

Window 1: P(Outlier) = 52.8 % Thresh = 0.0 Score = -0.06453 Verdict: OK

Window 2: P(Outlier) = 98.5 % Thresh = 0.0 Score = 0.00453 Verdict: Anomaly

Window 3: P(Outlier) = 58.9 % Thresh = 0.0 Score = -0.05539 Verdict: OK

HOST: shoal.heprc.uvic.ca

Window 1: P(Outlier) = 59.8 % Thresh = 0.0 Score = -0.05895 Verdict: OK

Window 2: P(Outlier) = 68.0 % Thresh = 0.0 Score = -0.04424 Verdict: OK

Window 3: P(Outlier) = 82.7 % Thresh = 0.0 Score = -0.01771 Verdict: OK

Figure 15: Anomaly detection report.

A-5

	Executive Summary
	List of Figures and Tables
	Glossary
	Introduction
	Problem definition
	Requirements

	Monitoring Infrastructure
	Options considered
	Cacti
	Munin
	Prometheus
	ELK Stack
	Zabbix
	Ganglia
	Nagios

	Possible configurations
	Zabbix Standalone
	Nagios with PNP4Nagios
	Nagios with Ganglia Independent
	Nagios with Ganglia Integration

	Final system design
	Deployment
	Host management

	Anomaly Detection
	Background
	Anomaly detection in the CERN infrastructure
	Anomaly detection in the HEPRC infrastructure
	Data preparation
	Model training
	Inference and reporting

	Conclusions
	Future Work
	Acknowledgements
	References
	Appendix Custom Metric Script
	Appendix Deployment Script
	Appendix Sample Nagios Templates
	Appendix Sample Anomaly Detection Configuration
	Appendix Sample Anomaly Detection Report

