UVIC Grid Testbed:
Modifications to the phys.uvic.ca AFS Cell

UVIC Grid Testbed and Grid Canada
Department of Physics and Astronomy
University of Victoria
Victoria, British Columbia

Jenny Allan
0021379
Computer Engineering
jjallan@engr.uvic.ca

in partial fulfillment of the requirements of the B.Eng Degree

Supervisor’s Approval: To be completed by Co-op Employer

I approve the release of this report to the University of Victoria for evaluation purposes only

The report is to be considered NOT CONFIDENTIAL CONFIDENTIAL
Signature Position Date
Name(print) E-mail Fax #

If a report is deemed CONFIDENTIAL, a non-disclosure form signed by an evaluator will be faxed
to the employer. The report will be destroyed following evaluation.If the report is NOT
CONFIDENTIAL, it will be returned to the student following evaluation.

April 23, 2003

Contents

1 Introduction 1
1.1 Grid Computing Lo 1
1.2 Grid Canada and the UVIC Grid Testbed 1

2 ATLAS Tests on Grid Canada, Fall 2002 2
2.1 Setup of AFS, Fall 2002 2
2.2 ATLAS event simulation jobs, Fall 2002 2

3 Intended Usage of AFS, Spring 2003 6
3.1 ATLAS event simulation jobs, Spring 2003 6

4 Proposed changes to AFS to Increase Efficiency 7
4.1 Clones and Replicated Volumes 7
4.2 The submitted proposal 8

5 Accepted Setup of AFS, Spring 2003 8

6 Results and Conclusions 9
6.1 Seperate Submission to Single Remote Hosts 9
6.2 Simultaneous Submission on Two Remote Hosts 12
6.3 Simultaneous Submission to Multiple Remote Hosts 16

7 Conclusion 21

8 Recommendations 21

A AFS: A Distributed File System 1

A1l Serversand Clients 1

A2 Cells e
A.3 Transparent Access and the Uniform Namespace
A4 Volumes L s
A5 Mount Points

A.5.1 The Three types of Mount Points

A.5.2 Rules of Mount Point Traversals
A.6 Efficiency Boosters: Replication and Caching
A.7 Security: Mutual Authentication and Access Control Lists . .
A.8 Details of Changes made to the phys.uvic.ca AFS cell

The Globus Toolkit

B.1 User Commandsuue.o.oo..

ii

List of Tables

N O Ot o W N

10

11

Basilisk.phys.uvic.ca Hardware/Software Information 4
Past Volume Mount Points on the phys.uvic.ca AFScell . . . 5
Objy.phys.uvic.ca Hardware/Software Information 8
Current Volume Mount Points on basilisk.phys.uvic.ca 10
Current Volume Mount Points on objy.phys.uvic.ca 11
Job Submission times for vision.triumf.ca by itself 11

Job Submission times for thuner-gw.phys.ualberta.ca by
itselfo 12

Job Submission times for vision.triumf.ca at the same time
as thuner-gw.phys.ualberta.ca 13

Job Submission times for thuner-gw.phys.ualberta.ca at
the same time as vision.triumf.ca 15

Job Submission times for vision.triumf.ca, when submitted
to a total of six grid resource sites simultaneously. 18

Job Submission times for thuner-gw.phys.ualberta.ca, when
submitted to a total of six grid resource sites simultaneously. 18

List of Figures

> W N

(@3]

UVIC Grid Testbed 3
Single Hosts Without Clones - Seperate Submission . 13
Single Hosts With Clones - Seperate Submission ... 14

Single Hosts Without Clones - Simultaneous Submis-
SIOM L 16

Single Hosts With Clones - Simultaneous Submission 17

Multiple Hosts Without Clones - Simultaneous Sub-
Mission Lo 19

Multiple Hosts With Clones - Simultaneous Submission 20

iii

Abstract

This report discusses improvements to the phys.uvic.ca AFS cell at the UVIC
Grid Testbed. During the fall of 2002, BaBar and ATLAS tests were con-
ducted over the UVIC Grid Testbed and Grid Canada by a previous co-op
student, Dan Vanderster. It was found during those tests that a main source
of the low usage of the remote host CPU cycles was due to latencies incurred
over the network during the numerous interactions with the phys.uvic.ca
AFS cell. These interactions occurred when the remote hosts sourced input
data and execution scripts from and sent output data to the phys.uvic.ca
AFS cell in Victoria. A recommendation was to improve the job submission
method by using Grid-FTP to transfer the input and output data files and
only use AFS to source the execution scripts. Since the execution scripts
are static it was suggested to turn them into a read-only volume and to
create clones in order to increase efficiency. AFS has a faster, more efficient
method of reading clones. If a volume is read-only (a clone or a replicated
volume) then the client only has to contact the AFS server once to cache the
volume. However, if a volume is read/write (not static) then the client has
to contact the AFS server once to cache the volume, then each time it opens
a file it has to contact the AFS server to ensure that the file has not been
altered since it was cached. Plus, by adding more sites in the phys.uvic.ca
AFS cell, the data becomes more accessible simply due to the fact that there
are more places from which it can be sourced.

Another machine was added to the phys.uvic.ca AFS cell and two clone/replicated
volumes were created. Various tests were conducted without the clones and
then again with the clones. It was obvious from the differences in remote
host CPU efficiencies, that the advent of the clones did, in fact, increase the
efficieny of the phys.uvic.ca AFS cell.

1 Introduction

This report discusses the attempts and results of those attempts to increase
the efficiency of the phys.uvic.ca AFS (Andrew’s File System) cell at the
UVIC Grid Testbed. For a proper introduction to AFS please see Appendix
A. Before jumping to the focus of this report: AFS Modifications, the term
Grid Computing will be defined and the organizations involved in the re-
search discussed in this report will be identified.

1.1 Grid Computing

Grid computing is a form of distributed computing that involves coordi-
nating and sharing computing, application, data, storage, or network re-
sources across dynamic and geographically dispersed organizations. Grid
technologies promise to change the way organizations tackle complex com-
putational problems [1]. The concept of Grid Computing was defined by
Tan Foster, et al., one of the founding fathers of grid computing and the
Globus Project. In his paper The Anatomy of the Grid [2], grid computing
is said to be ”coordinated research sharing and problem solving in dynamic,
multi-institutional virtual organizations”. The Globus Toolkit is a product
of the Globus Project, initiated in 1996 at Argonne National Laboratory,
U.S.A. [3]. This open source software enables secure usage of distributed,
heterogeneous domains using open protocols, interfaces, and schemas. For
more information about Globus please see Appendix B.

1.2 Grid Canada and the UVIC Grid Testbed

Grid Canada and nearly all other grids around the world are implemented
with the Globus Toolkit. Grid Canada is an organization created in partner-
ship between CANARIE [4], C83.ca [5] and the National Resarch Council of
Canada [6]. For more information about Grid Canada, please see [7]. The
UVIC Grid Testbed is located in the Department of Physics and Astronomy
at the University of Victoria. The professional researchers in the Depart-
ment of Physics and Astronomy at the University of Victoria started the
UVIC Grid Testbed. It was established to research Grid solutions that will
be required in order to be able to access the computational power needed
to simulate HEP (High Energy Physics) events and process the pedabytes
of data from the ATLAS experiment at CERN (European Organization

for Nuclear Research), which is their main research focus [8]. For more in-
formation about ATLAS and/or CERN please see [9] and [10]. The people
responsible for the maintenance and management of the UVIC Grid Testbed
are also partially or fully responsible for some of the other grid resources
in Grid Canada. The UVic Grid Testbed consists of a cluster of five Con-
dor [11] controlled, Redhat 7.2 Linux machines behind a firewall, accessed
through a Globus gateway, plus the phys.uvic.ca AFS cell, which consists of
two server machines. The UVIC Testbed can be seen in Figure 1. The UVIC
Grid Testbed is used as a local and initial grid resource to test applications
that are to be used on Grid Canada. The UVIC Grid Testbed’s current
project is to research ways in which to exploit grid resources (CPU cycles)
from HEP and non-HEP organizations throughout Canada, with minimal
inconvenience to the owners of those resources.

2 ATLAS Tests on Grid Canada, Fall 2002

2.1 Setup of AFS, Fall 2002

During the fall of 2002, UVIC Testbed Co-op student Dan Vanderster ran
ATLAS 4.0.1 data challenge tests. Globus 2.0 was used as the platform upon
which the tests were run and AFS was used as the intermediary for data
exchange. During that period the AFS setup at UVIC consisted of the one
machine, basilisk.phys.uvic.ca, running as the Database Server, File Server,
Binary Distribution, and System Control Machines for the phys.uvic.ca AFS
cell. Some of its hardware/software information can be seen in Table 1. The
volumes within the phys.uvic.ca AFS cell and their respective mount points
can be seen in Table 2. Note that all the mount points shown in Table 2
are regular mount points. See Appendix A, for more information on mount
point traversals.

2.2 ATLAS event simulation jobs - submitted using Globus
and AFS, Fall 2002

The ATLAS event simulation jobs were submitted via globus, as follows:

1. Using globus-job-run, a Perl executable script was submitted to a re-
mote grid host.

Figure 1: UVIC Grid Testbed
phys. uvi c. ca AFS cel

grid basi | i sk objy
DHCP server
DNS server
Fi rewal | / NAT — —
d obus servers ”m |||||
Wb server y \ \

Condor console | +rp
MyPr oxy server

G i dport [:ﬂ

| CAN\
| nt er net

] pI‘MSUﬂCE_ -
[|JIl - t estbed. phys. uvic. ca

- secure
fireval | NFS server
Ker ber os KDC
— Condor -
switch I controller
l LDAP server
4o 1717 11 o A1 11111

|~

gridl grid2 grid3 grid4 grids

2. Remote host fetches ATLAS input data and ATLAS .zsh event simu-
lation scripts off the phys.uvic.ca AFS cell.

3. Execute the ATLAS job on the remote host.

4. As the job is executing, output data is sent to the phys.uvic.ca AFS
cell.

On average these jobs took 39.62 hours to complete. It was observed that the
input data was constantly read in to the foreign host from the AFS server.
This is because the local AFS cache on the foreign machines is smaller then
the large ATLAS input files (total size of ATLAS input files is 2.5 GB). Since
the remote host could not read in the input files as fast as the input files
could be processed, a CPU efficiency of only 10% on average was observed.
Latency increased when the number of jobs being run simultaneously was
increased. This is because the number of resources trying to fetch input
files and ATLAS executable from the AFS server cause a traffic jam. The
latencies caused the CPU efficiency to decrease. It was also observed that as
the local AFS cache became full, output data was sent to the AFS server in
surges, rather than constantly. This does not efficiently make use of the AFS
server nor does it properly use the CPU cycles of the remote grid resource.
One of the recommendations made after these tests was to try sending the
data to the remote host via a more efficient method than AFS. Execute the
ATLAS job remotely using globus and AFS to fetch the ATLAS executable
from AFS. Send all output data to local disk. Then, send the output files
(total size of output files 2.8 GB) back to UVIC (and eventually AFS), after
the ATLAS execution is complete [12]. These recommendations are being
currently pursued (spring of 2003).

Table 1: Basilisk.phys.uvic.ca Hardware/Software Information

MODEL Pentium MMX CPU

RAM 128MB Processor: Single
(O] RedHat Linux 7.3 (valhalla) Speed: 200MHz
DISKSPACE

hda 20GB Maxtor 5T02H2
hdb 56GB Maxtor 6L060J3
hdc 56GB Maxtor 6L.060J3

Table 2: Past Volume Mount Points on the phys.uvic.ca AFS cell

VOLUME NAME ‘ MOUNT POINT
vicepa

public /afs/phys.uvic.ca/public
root.afs /afs

root.cell /afs/phys.uvic.ca
vicepb

home.babar.kanga
home.gable
home.gabriel
home.gking
home.jjallan
home.manj
home.sobie
home.wyvern
home.zwiers

/afs/phys.uvic.ca/babar/kanga
/afs/phys.uvic.ca/home/gable
/afs/phys.uvic.ca/home/gabriel
/afs/phys.uvic.ca/home/gking
/afs/phys.uvic.ca/home/jjallan
/afs/phys.uvic.ca/home/manj
/afs/phys.uvic.ca/home/sobie
/afs/phys.uvic.ca/home/wyvern
/afs/phys.uvic.ca/home/zwiers

vicepc

home.babar
home.babar.cern
home.babar.objectivity
home.babar.package
home.babar.packages
home.babar.releases
home.babar.roguewave
home.dvanders
home.nkanaya
home.starke

/afs/phys.uvic.ca/babar
/afs/phys.uvic.ca/babar/cern
/afs/phys.uvic.ca/babar/package/objectivity
/afs/phys.uvic.ca/babar/package
/afs/phys.uvic.ca/babar/dist/packages
/afs/phys.uvic.ca/babar/dist /releases
/afs/phys.uvic.ca/babar/package/RogueWave
/afs/phys.uvic.ca/home/dvanders
/afs/phys.uvic.ca/home/nkanaya
/afs/phys.uvic.ca/home/starke

vicepd
home.agarwal /afs/phys.uvic.ca/home/agarwal
home.atlas /afs/phys.uvic.ca/atlas

3 Intended Usage of the phys.uvic.ca AFS cell,
Spring 2003

With the previous usage of the AFS server, input data was fetched (read
from the AFS server) fairly consistently throughout the execution of the
job. The ATLAS executable scripts were fetched throughout the job, and
the ATLAS output files were cached and then sent (written) to the AFS
server as the local cache became full. The intended usage of AFS as a
facilitator of executing ATLAS jobs on the grid in spring 2003 was only as
the source for the actual ATLAS .zsh execution programs, but not for the
input or output data files. With the proposed setup, seen in section 3.1,
the ATLAS input and output files would be tarred, compressed and then
transferred using multi-streamed, secure Grid-FTP. Thus, AFS would only
be used for fetching the ATLAS .zsh executable, which is static.

3.1 ATLAS event simulation jobs - submitted using Globus
and AFS, Spring 2003

The ATLAS event simulation jobs were submitted via globus, as follows:

1. Using globus-job-run, a Perl executable script is submitted to a remote
grid host, which controls the following processes.

2. ATLAS input files are tarred and compressed on local host.
3. Using Grid-FTP, ATLAS input files are sent to the remote host.

4. ATLAS input files are untarred and uncompressed on remote host.

5. Remote host fetchs ATLAS .zsh event simulation scripts off the phys.uvic.ca

AFS cell.
6. Execute the ATLAS job on the remote host.
7. As the job is executing, output data is written to remote host disk.

8. Upon completion, ATLAS output files are tarred and compressed on
remote host.

9. Using Grid-FTP, ATLAS output files are sent back to the local host
and then to the phys.uvic.ca AFS cell.

4 Proposed changes to the phys.uvic.ca AFS cell
to Increase Efficiency

4.1 Clones and Replicated Volumes

All of the static .zsh ATLAS executables are stored in the home.atlas volume
on the AFS server. When a volume is being used for read-only purposes,
clones or replicated volumes can be made of the original read/write volume.
In the OpenAFS Administration Manual it states that using read-only and
replicated read-only volumes can facilitate a more efficient usage of AFS
Server machines if the material in the volumes being replicated does not
change very often. For a clear explanation of clones and replication vol-
umes, as well as mount point traversals, please see Appendix A. Since the
ATLAS execution files do not change unless a new ATLAS data Challenge
is brought about, the home.atlas volume is a perfect candidate to create
clones/replicated volumes. From Dan Vanderster’s Report [12], it was noted
that traffic bottlenecks occurred when the number of remote sites trying to
contact the AFS server increased. This is one reason why creating clones
or replication sites will help increase efficiency in the AFS cell. There will
simply be more sites from which data can be accessed. However, in the
OpenAFS Administration Manual it states that, as a rule, no more than
one clone/replication volume can be created per AFS File Server machine.
Thus, it would be an advantage to increase the number of AFS File Server
machines in the phys.uvic.ca AFS cell [13].

The second reason why creating clones/replication volumes is thought to
increase efficiency is due to how many remote procedure calls are made
when data is read from a read/write volume compared to when it is read
from a read-only volume. When a read/write volume is read by an AFS
client, the cache manager caches the whole or as much as the whole volume
being accessed as possible. Each time a file from within that volume is
accessed, the AFS cache manager must contact the AFS server to see if
any changes have been made to that file since it was cached on the AFS
client machine. When a read-only volume is read by an AFS client, the
cache manager also caches the whole or as much as the whole volume being
accessed as possible. However, the cache manager does not need to check
with the AFS server every time it accesses a different file because it knows
that the whole volume is static. Thus, the CPU efficiency of the remote host

accessing data from the phys.uvic.ca AFS cell should increase dramatically
while ATLAS is being executed over AFS, since the ATLAS event simulation
application accesses thousands of files from a volume that doesn’t change.

4.2

1.

The submitted proposal

Add another machine to the phys.uvic.ca AFS cell to be used as a File
Server Machine.

Make that machine a Database Server Machine as well.

Create a read-only clone on the same partition where home.atlas exists
on basilisk.phys.uvic.ca.

Create a read-only replicated volume on the new File Server machine.

5 Accepted Setup of AFS, Spring 2003

The proposal submitted in Section 4.2 was accepted in February 2003 and
the changes were put into place over a period of nearly 4 weeks. The new File
Server/Database Server machine that was incorporated into the phys.uvic.ca
AFS cell is called objy.phys.uvic.ca. Some of its hardware/software infor-
mation can be seen in Table 3. The resulting changes in the volumes cre-

Table 3: Objy.phys.uvic.ca Hardware/Software Information

MODEL Pentium III CPU

RAM 256MB Processor: Single

[ON] RedHat Linux 7.3 (valhalla) Speed: 451MHz
DISKSPACE

hda 12GB Quantum Fireball CX13.0A

hdb 97GB WDC WD1000BB-00CCB0
hdc 120GB Maxtor 4G120J6

hdd 80GB Samsung SP8004H

ated and their mount points can be seen in Table 4 and Table 5. Details
of the modifications can be seen in Section A.8. Note that the clone on
basilisk.phys.uvic.ca and the replicated volume created on objy.phys.uvic.ca

have a .read-only suffix. It may have been observed by the reader in Table 2
that there were already some clones on basilisk.phys.uvic.ca, root.afs.read-
only and root.cell.read-only, namely. These still remain in Table 4 and have
also been added to Table 5. The reasons why these are necessary is explained
in detail in Appendix A.

6 Observed Results and Conclusions due to changes
made in the phys.uvic.ca AFS cell

Several tests that use AFS and Grid-FTP were done before the clone and
replicated volume of home.atlas were made (the AFS setup described in
Section 2.1). These tests were then repeated with the new clone and repli-
cated volume (the AFS setup described in Section 5). The following sections
describe the tests and their outcomes. It should be noted that all tests con-
ducted were executing ATLAS 4.0.1 data challenge event simulation on the
Globus 2.2.4 platform, using OpenAFS version 1.2.3. The following tests
were performed following the procedure described in section 3.1.

6.1 Seperate Submission to Single Remote Hosts

The times recorded in Table 6 and 7 are from running the ATLAS 4.0.1
data challenge on two single remote hosts at seperate times. These times
and CPU efficiencies' are then used as a base from which to compare all
following tests. When they were ran they were the only remote hosts (each
at seperate times) sourcing data from the phys.uvic.ca AFS cell. It can be
observed in Figures 2 and 3 that the rates of data transfer from AFS peaked
at about 25kBytes/s. Data transfer rates shown on all graphs are averages
over five minutes. Since the four tests done in this section;

1. Job submitted to vision.triumf.ca without clones/replicated volumes
2. Job submitted to vision.triumf.ca with clones/replicated volumes

3. Job submitted to thuner-gw.phys.ualberta.ca without clones/replicated
volumes

LCPU Efficiency is defined for this report to be (system time + user time)/(real time).

Table 4: Current Volume Mount Points on basilisk.phys.uvic.ca

VOLUME NAME

| MOUNT POINT

vicepa

public /afs/phys.uvic.ca/public
root.afs /afs

root.afs.readonly /afs

root.cell /afs/phys.uvic.ca

root.cell.readonly

/afs/phys.uvic.ca

vicepb

home.babar.kanga
home.gable
home.gabriel
home.gking
home.jjallan
home.manj
home.sobie
home.wyvern
home.zwiers

/afs/phys.uvic.ca/babar/kanga
/afs/phys.uvic.ca/home/gable
/afs/phys.uvic.ca/home/gabriel
/afs/phys.uvic.ca/home/gking
/afs/phys.uvic.ca/home/jjallan
/afs/phys.uvic.ca/home/manj
/afs/phys.uvic.ca/home/sobie
/afs/phys.uvic.ca/home/wyvern
/afs/phys.uvic.ca/home/zwiers

vicepc

home.babar
home.babar.cern
home.babar.objectivity
home.babar.package
home.babar.packages
home.babar.releases
home.babar.roguewave
home.dvanders
home.nkanaya
home.starke

/afs/phys.uvic.ca/babar
/afs/phys.uvic.ca/babar/cern
/afs/phys.uvic.ca/babar/package/objectivity
/afs/phys.uvic.ca/babar/package
/afs/phys.uvic.ca/babar/dist/packages
/afs/phys.uvic.ca/babar/dist/releases
/afs/phys.uvic.ca/babar/package/RogueWave
/afs/phys.uvic.ca/home/dvanders
/afs/phys.uvic.ca/home/nkanaya
/afs/phys.uvic.ca/home/starke

vicepd
home.agarwal /afs/phys.uvic.ca/home/agarwal
home.atlas /afs/phys.uvic.ca/atlas

home.atlas.readonly

/afs/phys.uvic.ca/atlas

10

4. Job submitted to thuner-gw.phys.ualberta.ca with clones/replicated
volumes

were all submitted seperately, there was never more than one remote grid
resource trying to access the phys.uvic.ca AFS cell at once. Any increase
in CPU efficiency must be attributed the different methods (that AFS uses
for read/write and read-only volumes) that RPC’s (call-backs) are used to
check if the volumes are up-to-date, rather than the fact that more sites
increase the accessibility of the data. See Section A.6 for a reminder on how
call-backs work. The information in Table 6 shows that when only one
job is being run, there is a for all practical matter, no increase or decrease
in remote host CPU efficiency when clones/replicated volumes are added to
the cell. However, in Table 7 there is a marked increase in remote host CPU

Table 5: Current Volume Mount Points on objy.phys.uvic.ca

VOLUME NAME | MOUNT POINT

vicepa

root.afs.readonly /afs

root.cell.readonly /afs/phys.uvic.ca

vicepb

home.atlas.write | /afs/phys.uvic.ca/atlas-write
vicepc

home.atlas.readonly | /afs/phys.uvic.ca/atlas

Table 6: Job Submission times for vision.triumf.ca by itself

Without Clone With Clone

Grid-FTP (put): | 4m4ls 5m4ls

Untar and Uncompress (remote): | 5mds 4mb53s
Execution (real): | 98m45s 99m3s

Execution (user): | 86m43s 86m42s

Execution (system): | 2mlls 2m9s

Tar and Compress (remote): | 13m30s 13mbs
Grid-FTP (get): | 1m12s 1m13s

Untar and Uncompress (local): | 4mls 3m57s

Total Job Run Time: | 2h7m58s 2h8m20s
CPU Efficiency: | 90% 89.7%

11

efficiency with the advent of the clone/replicated volume. In fact thuner-
gw.phys.ualberta.ca is in Edmonton, AB (which is 1222 km from UVIC)
and vision.triumf.ca is in Vancouver, BC (which is only 68 km from UVIC).
Thus, perhaps due to the exellent transfer rates that can be achieved to
TRIUMF, the increased efficiency of the phys.uvic.ca AFS cell cannot be
observed, but the slower connection to the University of Alberta magnifies
the changes in the phys.uvic.ca AFS cell, so that the difference is more
noticable.

6.2 Simultaneous Submission on Two Remote Hosts

The times recorded in Table 8 and 9 are from running the ATLAS 4.0.1
data challenge on two single remote hosts, vision.triumf.ca and thuner-
gw.phys.ualberta.ca, simultaneously. = Again, what was observed in Sec-
tion 6.1 can be observed in Tables 8 and 9. In Section 6.1 it was observed that
due to the excellent connection from UVIC to TRIUMF (vision.triumf.ca),
the increased efficiency at the phys.uvic.ca AFS cell, created by adding the
clone and replicated volume, is unobservable when looking for a correlation
with the remote host CPU efficiency. The same can be seen in Table 8, as
the difference in the CPU efficiencies with and without clones in Table 8
is negligible. Similarly, it was observed in Section 6.1 that the distance
between UVIC and the University of Alberta, and the latencies that the
distance creates, help to emphasize the increased server efficiencies at the
phys.uvic.ca AFS cell. This increased AFS efficiency can correspondingly be

Table 7: Job Submission times for thuner-gw.phys.ualberta.ca by itself

Without Clone With Clone
Grid-FTP (put): | 7m14s 6mb0s
Untar and Uncompress (remote): | 8ml17s 6m28s
Execution (real): | 72m43s 66m31s
Execution (user): | 47m48s 47m48s
Execution (system): | 5m10s 5m27s
Tar and Compress (remote): | 9m26s 8m43s
Grid-FTP (get): | 2m40s 1m39s
Untar and Uncompress (local): | 4mls 4m0s
Total Job Run Time: | 1h44m40s 1h34m33s
CPU Efficiency: | 72.8% 80.0%

12

Figure 2: Single Hosts Without Clones - Seperate Submission

The two peaks in this graph, at 00:15 and 11:30 (ignore peak at 17:30), show
the ATLAS .zsh executable being grabbed by thuner-gw.phys.ualberta and
vision.triumf.ca, respectively, from the phys.uvic.ca AFS cell.

Traffic Analysis for Basilisk
5|:| k - + + i * * + + + * * I

40 k1
30kt

20kt

Eytes Per Second

10kt

i

2200 00;00 0200 O4:00 OE:00 02:00 1000 42;00 14:00 1&:00 1800

B Inbound <Curreat: &11.356 hverage: BB7.33 P 361 ol i 2.68 k
B outhound Current: 37.00 Average: 420, EB a3 o e B0, 33 k

Table 8: Job Submission times for vision.triumf.ca at the same time as
thuner-gw.phys.ualberta.ca

Without Clone With Clone
Grid-FTP (put): | 10m17s 10m42s
Untar and Uncompress (remote): | 4m57s 4mb5s
Execution (real): | 99m15s 98m40s
Execution (user): | 86m46s 86m44s
Execution (system): | 2m10s 2mlls
Tar and Compress (remote): | 13m16s 13m11s
Grid-FTP (get): | 1m13s 1m13s
Untar and Uncompress (local): | 4mls 4mls
Total Job Run Time: | 2h13m28s 2h13m25s
CPU Efficiency: | 89.6% 90.1%

13

Figure 3: Single Hosts With Clones - Seperate Submission

The two peaks in these graphs show the ATLAS .zsh executable being
grabbed by thuner-gw.phys.ualberta from basilisk.phys.uvic.ca in (a) at
04:30 (ignore all other peaks) and vision.triumf.ca from basilisk.phys.uvic.ca
in (b) at 23:45 (ignore peak at 19:15), respectively.

Traffic Analysis for Basilisk
I -4 B T . e S e i T S e S S SRR
1'3':'k':"." : - | - ¥ i o 1 1 o
= 4 . . 4
- | b g
o an k 1t i i i W W a i i i - & it
1 I ' ' :
L el k + 4
- +
-1 a0 k1t Pttt i + + =il + + 1
- t 4 ']
e 4 4
i “ - i 5 - ﬂ I ﬁ- - { - B - - ![- - |
! i L | :
10: 00 412:00 414:00 16:00 18:00 20:00 22:00 00:00 ©02:00 O04:00 O08:00 0O8:00
B Inbound <Curreat: 708,10 hverage: 7o4.48 P 367 Ml e B.18 k
B outhound Current: .70 Average: 1.34 £ Maximum 115 98 k
Traffic Analysis for Basilisk
Tl SR S W0 WSR-S Vel e AN WS T Sl i L St St e S VALY S i
- 20kt 1
-
=)
-
v
r |
a 4
-
13 1wkt *
o
-
D i
- |
. |
a - i
18:00 20:00 22:00 00:00 02:00 04:00 O6:00 O08:00 10:00 12:00 14:00 16:00
B inbound <Curreat: B38.77 hvErage: E83.88 P 361 i e 1.78 k
B outhound Current: 35. 80 Average: 221.77 a3 o e 2527k

14

seen through the increase in the CPU efficiency at the remote site, thuner-
gw.phys.ualberta.ca.

Another observation in Section 6.1 was that the increase in phys.uvic.ca AFS
cell efficiency could not be because there are data sites (clones/replication
volume) as there was only one host ever accessing the data. In this section,
however, there are two remote hosts accessing the data off of the phys.uvic.ca
AFS cell. Still, when looking at Figure 4, which shows simultaneous sub-
mission to vision.triumf.ca and thuner-gw.phys.ualberta.ca without clones,
it can be seen when compared to Figure 2, which shows seperate submission
to vision.triumf.ca and thuner-gw.phys.ualberta.ca without clones, that AFS
has not been saturated. The transfer rates are simply doubled and twice up
much data moves twice as fast. What is even stranger is that in the simul-
taneous submission to vision.triumf.ca and thuner-gw.phys.ualberta.ca, as
seen in Figure 5, only basilisk.phys.uvic.ca is accessed. It was expected that
both AFS Server machines would be accessed. The reason for this is un-
known. What is known, however, is that the individual transfer rates are not
increased due to the increased accessibility of the data on the phys.uvic.ca
AFS cell. Instead, the increased CPU efficiencies seen in Table 9 must be
attributed to the smarter call-back method used by AFS when accessing
data from a read-only volume.

Table 9: Job Submission times for thuner-gw.phys.ualberta.ca at the
same time as vision.triumf.ca

Without Clone With Clone
Grid-FTP (put): | 10m26s 10m27s
Untar and Uncompress (remote): | 6m47s 6mb3s
Execution (real): | 102m48s 66m29s
Execution (user): | 49m6s 47m48s
Execution (system): | 9m49s 5m23s
Tar and Compress (remote): | 19m50s 8m17s
Grid-FTP (get): | 3m29s 2m37s
Untar and Uncompress (local): | 3m58s 3mb8s
Total Job Run Time: | 2h25mb52s 1h39m3s
CPU Efficiency: | 57.3% 79.5%

15

Figure 4: Single Hosts Without Clones - Simultaneous Submission
The peak in this graph, at 17:20 (ignore peaks at 00:15 and 11:30), is the
ATLAS .zsh executable being grabbed by thuner-gw.phys.ualberta and vi-
sion.triumf.ca at the same time, from the phys.uvic.ca AFS cell.

Traffic Analysis for Basilisk
5|:| k # + + * * * + + + * * I

40 k1
30kt

20kt

Eytes Per Second

10kt

i

2200 00;00 0200 O4:00 OE:00 02:00 1000 42;00 14:00 1&:00 1800

B Inbound <Curreat: &11.356 hverage: BB7.33 P 361 ol i 2. 66 k
B outhound Current: 37.00 Average: 420, EB a3 o e B0, 33 k

6.3 Simultaneous Submission to Multiple Remote Hosts

Since up to this point, no increased efficiency has been seen due to the
increased accessibility, it was decided to try submitting the ATLAS 4.0.1
data challenge to a multitude of remote grid resources simultaneously and
to observe the results on the CPU efficiencies of the base remote sites, vi-
sion.triumf.ca and thuner-gw.phys.ualberta.ca. Again, this test was done
without and then with the clones/replicated volumes. In both cases, the AT-
LAS jobs were submitted to six sites at the same time. The observed differ-
ence on vision.triumf.ca can be seen in Table 10 and on thuner-gw.phys.ualberta.ca
in Table 11. For both of the tests, with and without clones, the ATLAS
4.0.1 data challenge was submitted to six remote machines simultaneously.
Although, it can be seen from the data in Tables 10 and 11 that there
was no marked increase in the base machines (vision.triumf.ca and thuner-
gw.phys.ualberta.ca) CPU efficiencies with the advent of the clones, what is
remarkable is that, of the six jobs submitted to remote machines, six finished
with the clones but only four finished without the clones. The reason that
they did not finish is because the AFS connection timed out. Those remote
hosts were unable to establish a connection with AFS, since the server was
too busy. So, even though the individual CPU efficiencies did not improve,
it can be seen that the accessibility of the data due to the extra volume sites
(clones/replicated volumes) does increase the efficiency of the phys.uvic.ca

16

Figure 5: Single Hosts With Clones - Simultaneous Submission
The peak or lack of peak in these graphs, at 19:15 (ignore peak at 13:50 on
(a) and peak at 22:450n (b)), is the ATLAS .zsh executable being grabbed
by thuner-gw.phys.ualberta and vision.triumf.ca at the same time, from the
phys.uvic.ca AFS cell. (a) objy.phys.uvic.ca, (b) basilisk.phys.uvic.ca. Note
that data is only accessed from basilisk.phys.uvic.ca
Traffic Analysis for Objy

T r et eyt errrrrierreernrrerrrmTsy |
-
&=
-
=)
-
v
| 9
a
-
L]
o
-
D
=3

18:00 20:00 22:00 00:00 02:00 04:00 O6:00 O8:00 10:00 12:00 14:00 16:00
B Inbound <Curreat: 174,58 hMverage: 157,81 Maximum: 511,06
B outbound Current: ».2E Average: 43,18 a3 o e 1.3 Kk

Traffic Analysis for Basilisk

+——— T I L S e B e e LN e L A e e B e o o S
- 20kt T
- + W
=)
- 1]
v
r | 4
a 4+ 0
-
- YT RENE FEEERERD EREEISEmEREE "
o 1]
-
D 1
- {

D - ‘_

18:00 20:00 22:00 00:00 02:00 04:00 O6:00 O08:00 10:00 12:00 14:00 16:00
B inbound <Curreat: B38.77 hvErage: E83.88 P 361 i e 1.78 k
B outbound Current: 3E.BD Average: 221.77 a7 i v 2527k

17

Table 10: Job Submission times for vision.triumf.ca, when submitted to
a total of six grid resource sites simultaneously.

Without Clone With Clone
Grid-FTP (put): | 27m6s 44m20s
Untar and Uncompress (remote): | 5m3s 5m6s
Execution (real): | 98m50s 98m1ls
Execution (user): | 86m4ls 86m4ls
Execution (system): | 2m10s 2m10s
Tar and Compress (remote): | 13m16s 13m16s
Grid-FTP (get): | 1m21s 1m48s
Untar and Uncompress (local): | 4m27s 4mATs
Total Job Run Time: | 2h30m41s 2h48m?27s
CPU Efficiency: | 89.9% 90.5%

Table 11: Job Submission times for thuner-gw.phys.ualberta.ca, when
submitted to a total of six grid resource sites simultaneously.

Without Clone With Clone
Grid-FTP (put): | 26m16s 43mb8s
Untar and Uncompress (remote): | 6m34s Tm14s
Execution (real): | 66m22s 70m30s
Execution (user): | 47m4T7s 48mlls
Execution (system): | 5m26s 6m16s
Tar and Compress (remote): | 8m24s 8m24s
Grid-FTP (get): | 2m23s 3m37s
Untar and Uncompress (local): | 4m29s 4m48s
Total Job Run Time: | 1h55m17s 2h19m36s
CPU Efficiency: | 80.1% 77.2%

18

Figure 6: Multiple Hosts Without Clones - Simultaneous Submis-
sion

The peaks in this graph, at 15:40 (ignore peak at 4:30), is the ATLAS .zsh
executable being grabbed by the remote hosts at the same time, from the
phys.uvic.ca AFS cell.

TrafHic Analysis for Basilisk

40 E 1

20 k7

Evtes Per Second

=

O 0o 125 0o

AFS cell. Figure 6 shows the traffic on the phys.uvic.ca AFS cell when the
four jobs are being run simultaneously without clones. Of course, all of the
traffic is on Basilisk.phys.uvic.ca because there is no clone to be accessed off
of objy.phys.uvic.ca. The transfer rates peak at about 50 KBytes/s. In Fig-
ure 7 the traffic on the phys.uvic.ca AFS cell can be seen when the six jobs
are being run simultaneously with clones. The remote sites access the data
from volume sites on both of the phys.uvic.ca AFS servers. Transfer rates
peak at about 60 KBytes/s on Objy.phys.uvic.ca and at about 33 KBytes/s
on Basilisk.phys.uvic.ca. It would seem accurate to say that even submitting
jobs to six remote hosts simultaneously, does not tax the phys.uvic.ca AFS
system when it has clones. However, without clones there are too many re-
mote AFS clients trying to contact and connect with the phys.uvic.ca AFS
cell. Thus, some of the connections time out and the completion of the job is
aborted. This seems conclusive in proving that adding the clones/replicated
volumes to the phys.uvic.ca AFS cell has increased the efficiency with which
the system is accessed.

19

Figure 7: Multiple Hosts With Clones - Simultaneous Submission
The peak in these graphs, at 23:45 (ignore all other peaks), is the ATLAS
.zsh executable being grabbed by the six remote hosts at the same time,
from the phys.uvic.ca AFS cell.

Traffic Analysis for Objy g
AREREEREEEEEERRSREEEREERE EAR! EREERERAEEERERRE ER]
By Kk At s e s T o e s o S S S S 1
= { i i i b 1 &
4 a0 K oAb CR + i i i i + .
- { i i b i i b b b 1 B
L an k‘:‘ decssdicesdbesadesse S semsilbvesdinasillvesod el sessdncesffensebss il sevs hssdisased sevedees s - & s & N
- 4 4
o | g
- m kd- T PNT NLIL [TTTTESRRENNT AN SRR IR SPRRESSRY SARRIPRN N SRRF BRSPS SRR SERRT SR SIS SRR SRRRE SRR RRRES "B SRR RRE SR SRR BRF SRRRE PRF PSS SRR SRR SRRF SERI SRS SRR SRRRF SRRE R £
] |
= 1 +* 1
=] 10 K $dedetodedad S P T PR R —— 4 ide
} {
o . x 3 £
12:00 414:00 48:00 48:00 2000 =22:00 0000 02:00 O4:00 O&:00 O8:00
B Inbound <Curreat: 244,87 Average: 237.16 P 27 i e 252k
B outbound Current: 37. 40 HUErage: ETE.TE M 5 fd i E3. 88 k
Traffic Analysis for Basilisk 2
r+....--.-4--.—— B T T T e Rt Bt SRS S S '
i i i i i]
b i i
100 k:—. . o i =t e . & i =t i + # it &
- £ i i i ¥
H B i i] &
o a0 k ++ i 4 | ey e - i e s s e s s 4 o
- - H H i ' ' ' H i i H ' &
re E-} i i 1 i i 1 i i 54
3 o I 1 | o) N O
o T + 1 4 + + + i i + 1
o a0 k.i. i | t O M P W -+ t - . | H i .3.
- t i i 3 ¥ : i i + 1
g . H s + s i 4
- 20 K Fdeid N1 T ke I S - SFRRMI N W - P §
EEEEE i iEEEE e i HE

a
1000 12:00

B Inbound

Current:
B outbound Currest:

16:00 168:00 20:00 22:00 00:00 O02:00 04:00 06:00 O8: 00

1400
7OE, 10 Average: 794,48 P 27 i e E19 k
3E,. 7D Beerage: .34 K Maximum: 115,98 k

20

7 Conclusion

The tests that were conducted are conclusive in ascertaining that the im-
provements increased the phys.uvic.ca AFS cell efficiency, making it faster
for remote grid resources to access data from it. The test results described
in Sections 6.1 and 6.2 show that the different method used for call-backs
by AFS when there are clones/replicated volumes compared to no clones in-
creases the phys.uvic.ca AFS cell. The test results described in Section 6.3
shows that by adding more physical sites (clones and replicated volumes)
the data becomes more accessible and the phys.uvic.ca AFS cell can han-
dle being simultaneously accessed by more remote machines then without
clones/replicated volumes.

8 Recommendations

Although the tests that were conducted are conclusive in ascertaining that
the improvements increased the phys.uvic.ca AFS cell efficiency, it would be
a good idea to conduct more tests along the same lines, but continuously,
to prove that AFS can handle continuous access over extended periods of
time. Another recommendation would be to redo the tests with a different
connection, because the connection hub to the phys.uvic.ca AFS cell is a
suspect as a cause for slowing down transfer rates. Finally, if this setup
were to be committed for production use, it would be advised to invest in
newer machines as the phys.uvic.ca AFS cell Server machines.

References
[1] "Grid Computing: The Basics” [Webpage] Available at:
http://www.grid.org/about/gc/

[2] I. Foster, C. Kesselman, S. Tuecke, ”The Anatomy of the Grid: En-
abling Scalable Virtual Organizations”, International J. Supercomputer
Applications, Vol.15 (3), 2001.

[3] I. Foster, ”The Grid: Computing without Bounds”, Scientific Ameri-
can, Vol.288 (4) pp.78-85, Apr.2003.

21

[4] ”Canada’s Research and Innovation Network” [Webpage| Available at:
http://www.canarie.ca/

[5] ”Canadian High Performance Computing Collaboratory” [Webpage]
Available at: http://www.C3.ca/

[6] "The National Research Council” [Webpage] Available at:
http://www.nrc-cnre.ge.ca/

[7] Gridmaster, "Grid Canada” [Webpage] Available at:
http://www.gridcanada.ca/about.html

[8] Gridmaster, ”UVIC Grid Testbed” [Webpage] Available at:
http://grid.phys.uvic.ca

[9] M. Barnett, ”The ATLAS Experiment Homepage” [Webpage] Available
at: http://pdg.lbl.gov/atlas/atlas.html

[10] ”CERN” [Webpage| Available at: http://www.http://public.web.cern.ch/public/

[11] "The Condor Project - Homepage” [Webpage| Available at:
http://www.cs.wisc.edu/condor/

[12] D.Vanderster, ”Grid Computing Using Particle Physics Applications”,
UVIC Computer Engineering Co-op Report, pp.15-17, 2002.

[13] Webmaster, ”OpenAFS” [Webpage] (Mar 2003) Available at:
http://www.openafs.org

[14] M. I. Williams, C. Hee, B. Barrera, T. Glanzman, ”The
BaBar Homepage”, [Webpage] (Mar 2003) Available at:
http://www.slac.stanford.edu/BFROOT/

22

APPENDIX A 1

A AFS: A Distributed File System

The following is excerpted from the Administration Guide off of the Ope-
nAFS website. For more information please see [13].

AFS is a distributed file system that enables users to share and access all of
the files stored in a network of computers as easily as they access the files
stored on their local machines. The file system is called distributed for this
exact reason: files can reside on many different machines (be distributed
across them), but are available to users on every machine.

A.1 Servers and Clients

In fact, AFS stores files on a subset of the machines in a network, called file
server machines. File server machines provide file storage and delivery ser-
vice, along with other specialized services, to the other subset of machines
in the network, the client machines. These machines are called clients be-
cause they make use of the servers’ services while doing their own work. In
a standard AFS configuration, clients provide computational power, access
to the files in AFS and other ”general purpose” tools to the users seated at
their consoles. There are generally many more client workstations than file
server machines.

AFS file server machines run a number of server processes, so called because
each provides a distinct specialized service: one handles file requests, another
tracks file location, a third manages security, and so on. To avoid confusion,
AFS documentation always refers to server machines and server processes,
not simply to servers. For a more detailed description of the server processes,
see AFS Server Processes and the Cache Manager.

A.2 Cells

A cell is an administratively independent site running AFS. As a cell’s sys-
tem administrator, you make many decisions about configuring and main-
taining your cell in the way that best serves its users, without having to
consult the administrators in other cells. For example, you determine how
many clients and servers to have, where to put files, and how to allocate
client machines to users.

APPENDIX A 2

A.3 Transparent Access and the Uniform Namespace

Although your AFS cell is administratively independent, you probably want
to organize the local collection of files (your filespace or tree) so that users
from other cells can also access the information in it. AFS enables cells to
combine their local filespaces into a global filespace, and does so in such
a way that file access is transparent—users do not need to know anything
about a file’s location in order to access it. All they need to know is the
pathname of the file, which looks the same in every cell. Thus every user
at every machine sees the collection of files in the same way, meaning that
AF'S provides a uniform namespace to its users.

A.4 Volumes

AF'S groups files into volumes, making it possible to distribute files across
many machines and yet maintain a uniform namespace. A volume is a unit
of disk space that functions like a container for a set of related files, keeping
them all together on one partition. Volumes can vary in size, but are (by
definition) smaller than a partition.

Volumes are important to system administrators and users for several rea-
sons. Their small size makes them easy to move from one partition to an-
other, or even between machines. The system administrator can maintain
maximum efficiency by moving volumes to keep the load balanced evenly. In
addition, volumes correspond to directories in the filespace—most cells store
the contents of each user home directory in a separate volume. Thus the
complete contents of the directory move together when the volume moves,
making it easy for AFS to keep track of where a file is at a certain time.
Volume moves are recorded automatically, so users do not have to keep track
of file locations.

A.5 Mount Points

The directory that corresponds to a volume is called its root directory, and
the mechanism that associates the directory and volume is called a mount
point. A mount point is similar to a symbolic link in the file tree that
specifies which volume contains the files kept in a directory. A mount point
is not an actual symbolic link; its internal structure is different. A volume is
said to be mounted at the point in the file tree where there is a mount point

APPENDIX A 3

pointing to the volume. A volume’s contents are not visible or accessible
unless it is mounted.

A.5.1 The Three types of Mount Points

AFS uses three types of mount points, each appropriate for a different pur-
pose because of how the Cache Manager handles them.

e When the Cache Manager crosses a regular mount point, it obeys all
three of the mount point traversal rules previously described.

AFS performs best when the vast majority of mount points in the
filespace are regular, because the mount point traversal rules promote
the most efficient use of both replicated and nonreplicated volumes.
Because there are likely to be multiple read-only copies of a replicated
volume, it makes sense for the Cache Manager to access one of them
rather than the single read/write version, and the second rule leads
it to do so. If a volume is not replicated, the third rule means that
the Cache Manager still accesses the read/write volume when that is
the only type available. In other words, a regular mount point does
not force the Cache Manager always to access read-only volumes (it is
explicitly not a "read-only mount point”).

Note: To enable the Cache Manager to access the read-only version of
a replicated volume named by a regular mount point, all volumes that
are mounted above it in the pathname must also be replicated. That
is the only way the Cache Manager can stay on a read-only path to
the target volume.

e When the Cache Manager crosses a read/write mount point, it at-
tempts to access only the volume version named in the mount point. If
the volume name is the base (read/write) form, without a .readonly or
.backup extension, the Cache Manager accesses the read/write version
of the volume, even if it is replicated. In other words, the Cache Man-
ager disregards the second mount point traversal rule when crossing
a read/write mount point: it switches to the read/write path through
the filespace.

It is conventional to create only one read/write mount point in a cell’s
filespace, using it to mount the cell’s root.cell volume just below the
AFS filespace root (by convention, /afs/.cellname). As indicated, it

APPENDIX A 4

is conventional to place a period at the start of the read/write mount
point’s name (for example, /afs/.abc.com). The period distinguishes
the read/write mount point from the regular mount point for the
root.cell volume at the same level. This is the only case in which
it is conventional to create two mount points for the same volume.
A desirable side effect of this naming convention for this read/write
mount point is that it does not appear in the output of the UNIX
Is command unless the -a flag is included, essentially hiding it from
regular users who have no use for it.

The existence of a single read/write mount point at this point in the
filespace provides access to the read/write version of every volume
when necessary, because it puts the Cache Manager on a read/write
path right at the top of the filespace. At the same time, the regular
mount point for the root.cell volume puts the Cache Manager on a
read-only path most of the time.

Using a read/write mount point for a read-only or backup volume is
acceptable, but unnecessary. The first rule of mount point traversal
already specifies that the Cache Manager accesses them if the volume
name in a regular mount point has a .readonly or .backup extension.

e When the Cache Manager crosses a cellular mount point, it accesses
the indicated volume in the specified cell, which is normally a foreign
cell. (If the mount point does not name a cell along with the vol-
ume, the Cache Manager accesses the volume in the cell where the
mount point resides.) When crossing a regular cellular mount point,
the Cache Manager disregards the third mount point traversal rule. In-
stead, it accesses a read-only version of the volume if it is replicated,
even if the volume that houses the mount point is read/write.

It is inappropriate to circumvent this behavior by creating a read /write
cellular mount point, because traversing the read/write path imposes
an unfair load on the foreign cell’s file server machines. The File
Server must issue a callback for each file fetched from the read/write
volume, rather than single callback required for a read-only volume.
In any case, only a cell’s own administrators generally need to access
the read/write versions of replicated volumes.

It is conventional to create cellular mount points only at the second
level in a cell’s filespace, using them to mount foreign cells’ root.cell
volumes just below the AF'S filespace root (by convention, at /afs/foreign_cellname).
The mount point enables local users to access the foreign cell’s filespace,

APPENDIX A)

assuming they have the necessary permissions on the ACL of the vol-
ume’s root directory and that there is an entry for the foreign cell in
each local client machine’s /usr/vice/etc/CellServDB file, as described
in Maintaining Knowledge of Database Server Machines.

Creating cellular mount points at other levels in the filespace and
mounting foreign volumes other than the root.cell volume is not gen-
erally appropriate. It can be confusing to users if the Cache Manager
switches between cells at various points in a pathname.

A.5.2 Rules of Mount Point Traversals

The Cache Manager observes three basic rules as it traverses the AFS
filespace and encounters mount points:

1. Access Backup and Read-only Volumes When Specified

When the Cache Manager encounters a mount point that specifies a
volume with either a .readonly or a .backup extension, it accesses that
type of volume only. If a mount point does not have either a .backup
or .readonly extension, the Cache Manager uses Rules 2 and 3.

For example, the Cache Manager never accesses the read/write version
of a volume if the mount point names the backup version. If the
specified version is inaccessible, the Cache Manager reports an error.

2. Follow the Read-only Path When Possible

If a mount point resides in a read-only volume and the volume that it
references is replicated, the Cache Manager attempts to access a read-
only copy of the volume; if the referenced volume is not replicated, the
Cache Manager accesses the read/write copy. The Cache Manager is
thus said to prefer a read-only path through the filespace, accessing
read-only volumes when they are available.

The Cache Manager starts on the read-only path in the first place
because it always accesses a read-only copy of the root.afs volume if
it exists; the volume is mounted at the root of a cell’s AFS filespace
(named /afs by convention). That is, if the root.afs volume is repli-
cated, the Cache Manager attempts to access a read-only copy of it
rather than the read/write copy. This rule then keeps the Cache Man-
ager on a read-only path as long as each successive volume is repli-
cated. The implication is that both the root.afs and root.cell volumes

APPENDIX A 6

must be replicated for the Cache Manager to access replicated vol-
umes mounted below them in the AFS filespace. The volumes are
conventionally mounted at the /afs and /afs/cellname directories, re-
spectively.

3. Once on a Read/write Path, Stay There

If a mount point resides in a read/write volume and the volume name
does not have a .readonly or a .backup extension, the Cache Manager
attempts to access only the a read/write version of the volume. The
access attempt fails with an error if the read/write version is inaccessi-
ble, even if a read-only version is accessible. In this situation the Cache
Manager is said to be on a read/write path and cannot switch back
to the read-only path unless mount point explicitly names a volume
with a .readonly extension. (Cellular mount points are an important
exception to this rule, as explained in the following discussion.

A.6 Efficiency Boosters: Replication and Caching

AF'S incorporates special features on server machines and client machines
that help make it efficient and reliable.

On server machines, AFS enables administrators to replicate commonly-used
volumes, such as those containing binaries for popular programs. Replica-
tion means putting an identical read-only copy (It’s called a clone when
the replicated copy is put on the same partition as the original read/write
volume. Clones are not identical copies but only a database header and an
index of the vnode encompaased by the read/write volume.) of a volume
on more than one file server machine. The failure of one file server machine
housing the volume does not interrupt users’ work, because the volume’s
contents are still available from other machines. Replication also means
that one machine does not become overburdened with requests for files from
a popular volume.

On client machines, AFS uses caching to improve efficiency. When a user on
a client workstation requests a file, the Cache Manager on the client sends
a request for the data to the File Server process running on the proper file
server machine. The user does not need to know which machine this is; the
Cache Manager determines file location automatically. The Cache Manager
receives the file from the File Server process and puts it into the cache, an
area of the client machine’s local disk or memory dedicated to temporary

APPENDIX A 7

file storage. Caching improves efficiency because the client does not need to
send a request across the network every time the user wants the same file.
Network traffic is minimized, and subsequent access to the file is especially
fast because the file is stored locally. AFS has a way of ensuring that the
cached file stays up-to-date, called a callback.

A.7 Security: Mutual Authentication and Access Control
Lists

Even in a cell where file sharing is especially frequent and widespread, it is
not desirable that every user have equal access to every file. One way AFS
provides adequate security is by requiring that servers and clients prove
their identities to one another before they exchange information. This pro-
cedure, called mutual authentication, requires that both server and client
demonstrate knowledge of a ”shared secret” (like a password) known only
to the two of them. Mutual authentication guarantees that servers provide
information only to authorized clients and that clients receive information
only from legitimate servers.

Users themselves control another aspect of AFS security, by determining
who has access to the directories they own. For any directory a user owns,
he or she can build an access control list (ACL) that grants or denies access
to the contents of the directory. An access control list pairs specific users
with specific types of access privileges. There are seven separate permissions
and up to twenty different people or groups of people can appear on an access
control list.

A.8 Details of Changes made to the phys.uvic.ca AFS cell

A second machine, objy.phys.uvic.ca, has been added to the phys.uvic.ca
AF'S cell. Objy.phys.uvic.ca now runs as a Database Server and a File Server
Machine. First, read-only replication volumes were made of the root.afs and
root.cell volumes onto partition vicepa on objy.phys.uvic.ca. Secondly, a
new read/write volume, home.atlas.write was created on partition vicepb
on objy.phys.uvic.ca and mounted at /afs/phys.uvic.ca/atlas-write/. This
is where all output from any Atlas jobs should be sent to. (Or any directory
that you wish to send it to, within that directory. New directories can be
made by anyone in the atlas group.) Also any executable scripts that are
being changed on a daily basis should be stored at /afs/phys.uvic.ca/atlas-

APPENDIX B 1

write/. All unnecessary (scripts/files/output logs/output data/ that change
often) files that were located within /afs/phys.uvic.ca/atlas have been moved
to /afs/phys.uvic.ca/atlas-write.

A new hard-drive was added to objy.phys.uvic.ca and a new partition /vicepc
was created on it. A read-only replication of the home.atlas volume was
created on /vicepc of objy.phys.uvic.ca and a read-only clone of home.atlas
was created on /vicepd on basilisk.phys.uvic.ca. Write permission have been
removed for regular users (non-administrative) on the home.atlas volume
(which is mounted at /afs/phys.uvic.ca/atlas.

B The Globus Toolkit

The Globus Project is a research and development project focused on en-
abling the application of Grid concepts to scientific and engineering com-
puting. (See below for an explanation of the Grid.)

e Groups around the world are using the Globus Toolkit to build Grids
and to develop Grid applications.

e Globus Project research targets technical challenges that arise from
these activities. Typical research areas include resource management,
data management and access, application development environments,
information services, and security.

e Globus Project software development has resulted in the Globus Toolkit,
a set of services and software libraries to support Grids and Grid appli-
cations. The Toolkit includes software for security, information infras-
tructure, resource management, data management, communication,
fault detection, and portability.

B.1 User Commands

Globus jobs can be submitted directly if written in RSL (Resource Specifi-
cation Language) but for the normal user, the Globus Team has provided
easier to use wrappers. The most commonly used ones are described below.
For all of them except the first to work, you must have grid-proxy on the
local machine.

APPENDIX B 2

e grid-prory-init This command creates a proxy for the unix user. It
prompts you to enter your grid-proxy password that matches your
Public Key Interface RSA Certificate/Key pair, and then proceeds
with authentication.

e grid-prozy-info This command gives you information about your grid-
proxy. It tells you the subject name and the amount time remaining
on the proxy that is held by the unix user.

e grid-prozy-destroy This command destroys the proxy of the unix user.

e globus-job-run hostname:portnumber executable This command sub-
mits a job to a remote grid resource. It takes the arguments host-
name:portnumber and ezecutable. The executable can be from the
remote host (default) or it can be stagged from the local machine by
including -s before the executable. The results of the executable are
by default sent to standard out.

o globus-job-submit hostname:portnumber executable This command is
the same as globus-job-run except that it submits the job in batch
mode. It takes the same arguments as globus-job-run. The results of
the executable are by default saved to the unix users home directory.
A string of the jobid is output to standard output.

e globus-job-status jobid This command takes the argument of a valid
jobid and returns to standard out one of the four statuses: PENDING,
ACTIVE, DONE or FAILED.

e globus-job-get-output jobid This command takes the argument of a
valid jobid and returns to standard out the results of the executable.

o globus-url-copy [options] source_url destination_url This command does
a Grid-FTP (secure file transfer) from the first location to the second
location. If the location is local it must be defined as file:/ full_path/filename
and if it is remote it must be defined as gsiftp://remote_hostname/full_path/filename.

APPENDIX B 3

Third party transfers are allowed as long as you have a grid-proxy on
the source machine. There are options to change the number of par-
allel streams, block size and buffer size.

