
1 
 

 

University of Victoria 

Department of Mathematics & Statistics 

 

The Transition from MaxMind to MySQL Database for HEPRC’s Shoal 

Project 

In partial fulfillment 

of the requirements of the Math & Stats Co-op Program 

 

Summer 2021 

Work Term #1 

 By 

Kathryn Dolby 

Performed at: UVic HEPRC, Victoria 

Supervisor(s): Colson Driemel, Research Assistant 

Job title: Cloud Software Developer 

 

Confidentiality notice (Please select all that apply) 

Students - Please confirm the confidentiality status of the report with your 

employer! 

☐ This report is confidential. Do not share for any purpose other than evaluation and record 

keeping. 

☒ This report is not confidential 

☒ This report may be shared with other co-op students 

☐ This report may not be shared with other co-op students  

Student Signature:       



2 
 

Table of Contents 

1. Introduction 

2. Discussion 

2.1) Converting the Data 

2.2) MySQL Database 

2.3) The API 

2.4) Server Testing 

2.5) Automation 

3. Conclusions 

4. Acknowledgments 

5. References 

6. Appendix 

 

1. Introduction 

 The main purpose of my project was to convert the database used in HEPRC’s Shoal 

project1 for linking IP addresses to geographic locations (country, city, coordinates, etc.). For 

the purposes of this project, the relevant part of Shoal takes an IP address, finds its location, then 

matches an active squid which is closest to that location. The database used for the location data 

was to be converted from a MaxMind database to MySQL (Structured Query Language). The 

reason for this change was a potential increase in efficiency when accessing the IP database as 

well as to have flexibility with the database by having the ability to make direct changes. 

Modifications to a MaxMind geoip database (also known as MMDB) aren’t possible, because of 

the way the information in the database files are stored. Similar to most other databases, to be 



3 
 

space efficient, the file itself contains data stored in binary. This is unreadable to the human eye 

and can only be interpreted by MaxMind’s associated Application Programming Interface2 

(API). MaxMind’s API does not contain a way to modify the entries of an MMDB file, thus, 

transitioning to a different database is the only way to gain the freedom to make modifications. 

Both the MaxMind API along with an MMDB file are referenced by Python code in the 

Shoal project. My end goal was to have Shoal’s IP location database use MySQL instead, and to 

have an API that accommodates this change. It is ideal that no major changes must be made 

throughout the code in Shoal after the transition, so that wherever the database is accessed or the 

API is used, the behaviour is the same as MaxMind’s API. This would allow for a smooth 

transition. 

 

2. Discussion 

2.1. Converting the Data 

 Shoal already had a complete database file in MMDB format. My first step was to extract 

this data and change it into a form that can be understood by MySQL, so that it could eventually 

be input into tables within a MySQL database. The easiest way to accomplish this was by 

converting the MMDB file to a CSV file, which could then be read by MySQL. 

Fortunately, there exists such a conversion online 3. The code generates all IPv4 and 

IPv6 addresses, checking one-by-one for the contents associated with each address in the given 

MMDB file, using MaxMind’s API to interact with it, then outputs the address and associated 

data to a CSV file if it exists in the MaxMind database. I had to modify the code to work as a 



4 
 

regular python script and accommodate for my database file having differently named fields as 

well as some missing fields. I also made a few larger changes to this code. 

Firstly, I converted the IP address ranges from one value to two values: the start and end 

of the range as integers. This made the future MySQL queries much simpler. Since the code 

generated an address, then checked for it, then wrote to the CSV file, it created many repeat 

entries which were each small IP address ranges. Originally, in the MMDB file, these many 

small entries were one big range of IP addresses associated to a geolocation. I modified the code 

to scan through each chunk of 10,000 entries, sort them, and condense them to one IP range per 

entry, in O(nlogn) time, before writing the new group of less than 10,000 entries to the CSV file. 

This saved a lot of space, bringing sixteen million entries down to nine million entries. Although, 

there were potential range combinations missed on the boundary entries of these chunks, 

approximately 3200 in the worst case. Having a constant chunk size was worth missing some 

combinations, because the program runs faster and does not have to store all original sixteen 

million entries at once in the machine’s RAM.  

Another change I made was in the way the code wrote the database entries to the CSV 

file. Instead of having one large file with all entries, I adjusted it so that there would be two 

smaller files, one containing only IPv4 addresses, and the other containing only IPv6 addresses. I 

decided to do this within the conversion step because it did not add to the runtime of the 

conversion process. Performing the IPv4 and IPv6 separation in a separate script would have 

added to the total set up time. This separation was beneficial because it would prove to be 

quicker to add these separate CSV files into two separate tables in my MySQL schema. These 

two tables would also allow for faster query times. 



5 
 

According to the site from which the MMDB file was downloaded4, there were 

6,097,870 data entries. After running my conversion code, there were 9,220,980 lines/entries in 

total for the CSV files: 3,164,119 IPv4 entries and 6,056,861 IPv6 entries. None of these entries 

were duplicates. The cause of these extra entries is unknown, and it would not have a large effect 

on the overall speed of queries. Using the command line to do the combinations on a fully 

converted CSV file instead of during the conversion process, the same outcome was found. The 

cause of this issue is unknown, but was likely caused by the way the conversion code picks IP 

addresses before checking if they are in the database. 

 At the end of this file conversion, I compared the outputs of sixteen MMDB queries 

(Appendix, Table 1) against the grep command on the CSV files to confirm that the conversion 

worked as expected. The next step was to integrate the CSV files of geodata with a MySQL 

database. 

 

2.2. MySQL Database 

Creating the general schema for my MySQL database consisted of preparing columns 

corresponding to each geographical data column in the CSV files. MySQL offers many different 

data types, and I used those that needed the least space while storing the data correctly. For the 

string fields, varchar was the best option, and for the latitude and longitude, decimal saved 

space, since I knew there were no more than five digits after the decimal. For the start and end IP 

integer values, the data type used for each table was different. For the IPv4 table, the integer 

values were small enough to use an unsigned int. However, for the IPv6 table, the integer values 



6 
 

were much larger and had to be put into the decimal data type with at most thirty-nine digits. The 

CSV files could then be easily input into their respective tables. 

To save time in testing, I used only the “head” and “tail” of the IPv4 file, ten entries from 

the beginning and ten entries from the end. I then input the entirety of the CSV file and 

compared the same results from the first ten MMDB tests (Appendix, Table 1) to a basic MySQL 

query (Appendix, Table 2). The results matched as expected. 

 The majority of testing for this project came from choosing the ideal database setup. I 

tested two different database engines with no indexing, indexing on the start and end IP 

addresses, as well as with primary keys. On the InnoDB engine, the database sizes were 315.8 

MB, 411.0 MB, and 345.9 MB, respectively. The MyISAM engine gave smaller databases sizes, 

with 234.4 MB, 295.9 MB, and 277.9 MB. I then tested all six of these databases with multiple 

different MySQL queries (Appendix, Tables 3 & 4). The MyISAM engine proved to be much 

faster for queries in general than MariaDB’s default InnoDB engine.  

Where x is the integer value of the IP address, the tested queries were: 

Query 1: select * from ipv4 where start_ip <= x and end_ip >= x; 

Query 2: select * from ipv4 where x between start_ip and end_ip; 

Query 3: select * from (select * from ipv4 where start_ip<= x) where end_ip>=x; 

Query 4: select * from ipv4 where end_ip >= x order by end_ip asc limit 1; 

Overall, using the MyISAM engine and indexing with the “end_ip” values resulted in the 

quickest time with query #4. This query is the fastest because it uses only “end_ip” and does not 

consider “start_ip”, then sorts the query results, and outputs the first result. Each query using this 



7 
 

method took less than one hundredth of a second. However, there is one issue with this method. 

The given database only contains IP addresses in the range 1.0.0.0 – 223.255.255.255 for IPv4 

and 2000:: – feff:ffff:ffff:ffff:ffff:ffff:ffff:ffff for IPv6. Thus, there is a possibility that a queried 

IP address does not exist in the database. Even if a given IP address is not in the database, an 

incorrect result will be found and returned. This was fixed by checking the validity of the result 

after calling the query within the API created in the next step. 

 Direct time comparisons for all MySQL queries were made against running MMDB 

queries (Appendix, Table 5 with MMDB times). Shell scripts were created to run 101 randomly 

selected IP address queries for both the MMDB and the MySQL databases (Appendix, Table 6) 

to confirm that the MySQL query times were faster on average. 

 

2.3. The API 

 Before creating the layout of the new API to be used to interact with the MySQL 

database, I wrote the Python code that would call a query, access the database, and output a 

result. This would be called when initializing an instance of the Reader class. I again compared 

this output with the expected data from Table 1 and documented the time it took for each run of 

the code with different IP addresses as input. These times are significantly slower than the direct 

queries, because every time the script is called, the entire database is read before being queried. 

This happens because the database is read when initializing an instance of the Reader class, 

which is created for each individual query. The original MaxMind API has the same class layout 

and, also, reads the database for each Reader instance5, so the issue of this overhead reading 

time has always been present in the Shoal project. 



8 
 

 The format of the classes for the API were as follows, where “Reader” is a class that 

contains the class Geodata as an attribute: 

➢ Reader  

• Geodata  

o City 

o Country 

o Continent 

o Location 

o Postal 

o Subdivisions  

▪ Subdivision 

These classes were tested to ensure that the names used with MMDB would correspond 

to the same names with the same associated values in the new database. This allows for minimal 

change to the existing database reader call in the Shoal code6. The only change was the 

reference to the new API instead of MaxMind’s GeoIP2. All other references to attributes 

remained unchanged between MaxMind and the new implementation. 

 

2.4. Server Testing 

 A server for the database, MariaDB, was installed and set up. After writing the API in 

Python, very minimal changes must be made to the existing code in Shoal’s utilities.py. The new 

API was imported, and one line of code was changed to access this new API. Other necessary 

files were copied over. The test server webpage correctly displayed the geographical data of the 

active squids (Appendix, Figure 1) and the nearest squid (Appendix, Figure 2). 

Although, some issues became apparent on the webpage 7. Some decimal values for 

longitude and latitude were too long, so this was fixed in the MMDB to CSV conversion to 



9 
 

round values to the nearest hundred-thousandth. Also, accented letters in the CSV were being 

displayed as strange symbols in the MySQL database. The database and tables needed charset 

and collation changes to match the Unicode used from the MaxMind database, utf8mb4 for the 

charset and utf8mb4_unicode_ci for the collation. 

One unexpected problem occurred where a squid on the webpage displayed a city name 

in Germany that does not exist. This was found to be an error in the original MMDB file. 

Because of the new MySQL database, this was an easy fix. The city name for every similar entry 

was changed from the non-existent “Arching” to “Garching bei München” with only one line of 

MySQL for each of the two tables8. This showcases a major advantage to the new database. 

Now it is possible to change or remove existing entries, or add new entries manually as needed. 

 

2.5. Automation 

 Finally, the entire process was automated. With one shell script9, the setup for the 

MySQL database only required one call to run the script. Within the script, the MMDB file was 

downloaded and converted to CSV, the database and tables were set up according to the MySQL 

schema I created, the CSV files were input into the database, and any modifications to the 

database were made. The site from which the MMDB file is downloaded releases a new updated 

database monthly. The download portion of the script could be modified to download the most 

recent file at any given time, or update the database periodically based on need. Due to the 

MMDB to CSV conversion process, the script takes approximately two hours to run from 

download to completion. 



10 
 

The Shoal Ansible10 sets up the project from scratch on a machine. To the existing 

ansible, I added the installation and set up of the database server, MariaDB, the Python package 

installations required for my new code, and the call to run the script so that no part of the 

database transition was required to be done manually. I tested the Shoal ansible on a clean virtual 

machine on an Openstack cloud, and eventually it ran smoothly from start to finish. Now, 

whenever a new Shoal server is set up, it will be using a MySQL database instead of MaxMind. 

 

3. Conclusions 

 Using a MySQL database as opposed to a MaxMind database is beneficial in the case of 

Shoal and potentially other projects as well. The average query times using MaxMind were: 

0.25s for an IPv4 address, 0.081s for an IPv6 address, 7.238s for 101 random sequential queries, 

and 2.040s for 101 random queries in parallel.  MySQL proved to be quicker, for its average 

query times were: 0.072s for an IPv4 address, 0.073s for an IPv6 address, 6.759s for 101 random 

sequential queries, and 1.737s for 101 random queries in parallel. MySQL and MMDB have 

similar times in the fastest case, but MySQL is more consistent and maintains the short query 

times between 0.06 - 0.08 s, whereas MMDB can take almost one second. All these times 

include the creation of a “Reader” object which reads the entire database for each query that is 

called. 

Currently, the creation of the Reader object takes much more time than the query itself. 

In order to improve the efficiency of the database querying process, we would need to eliminate 

the need for the Reader object to be created with every query. Instead, the Reader could be 

recreated after a certain number of queries or after a specified amount of time. For now, the 



11 
 

MySQL database is still advantageous because of the ease with which the entries in the database 

can be modified. 

 

4. Acknowledgments 

 Thank you to Colson Driemel, Marcus Ebert, and Catherine Meng for helping me 

numerous times when I ran into errors, and for giving me direction with the project when I was 

unsure of how to proceed. They were also very patient when explaining ideas to me and giving 

tips for thorough testing. 

  



12 
 

5. References 

1. HEPRC. Shoal GitHub, github.com/hep-gc/shoal. 

2. MaxMind. GeoIP2 Python API, https://geoip2.readthedocs.io/en/latest/. 

3. A. Ovidiu. MaxMind mmdb to csv converter, https://github.com/ovimihai/MaxMind-

python-mmdb-to-csv-converter/blob/main/mmdb_converter.ipynb 

4. dbip. IP to City Lite database, https://db-ip.com/db/download/ip-to-city-lite. 

5. MaxMind. GeoIP2-python database.py, https://github.com/maxmind/GeoIP2-

python/blob/4e475fb1344cc95d05eff4772994ea2924342af3/geoip2/database.py. 

6. C. Driemel, et al. Shoal-sql utilities.py, https://github.com/hep-gc/shoal/blob/shoal-

sql/shoal-server/shoal_server/utilities.py, line 53. 

7. HEPRC. Shoal Test Server, http://206.12.154.84/. 

8. K. Dolby. Geodata Updates, https://github.com/hep-gc/shoal/blob/master/shoal-

server/shoal_server/setup-db/geodata_updates.sql. 

9. K. Dolby. Setup MySQL database script, https://github.com/hep-

gc/shoal/blob/master/shoal-server/shoal_server/setup-db/setup_db.sh. 

10. HEPRC. Ansible system for shoal, https://github.com/hep-gc/ansible-

systems/tree/master/heprc/staticvms/roles/shoal. 

  



13 
 

6. Appendix 

Table 1. MaxMind Tests 

Sixteen test IP addresses and their output from the MaxMind database for comparison to CSV 

files and MySQL queries. There are ten IPv4 addresses and six IPv6 addresses. 

Test IP Address MMDB Output 

206.12.154.13 
NA North America CA Canada Victoria (Harris Green) British 

Columbia 48.4244 -123.36 

1.0.0.125 
OC Oceania AU Australia South Brisbane Queensland -

27.4767 153.017 

76.255.255.254 
NA North America US United States Chicago Illinois 41.8781 -

87.6298 

62.18.255.1 EU Europe IT Italy Rome Lazio 41.818 12.4148 

160.167.53.236 
AF Africa MA Morocco Rabat (Agdal) Rabat-Salé-Kénitra 

33.9977 -6.84793 

208.64.0.240 
NA North America US United States Toronto Ohio 40.4642 -

80.6009 

59.118.72.238 AS Asia TW Taiwan Taipei Taiwan 25.033 121.565 

229.181.76.76 
geoip2.errors.AddressNotFoundError: The address 

229.181.76.76 is not in the database. 

49.115.176.86 
AS Asia CN China Ewirgol Xinjiang 42.5246 

87.53960000000001 

69.208.83.7 
NA North America US United States Kalamazoo Michigan 

42.2917 -85.5872 

2001:4860:4860::8888 
NA North America CA Canada Montreal Quebec 45.5017 -

73.5673 

2600:fc4f:8b66:: 
NA North America US United States Chantilly Virginia 

38.9097 -77.4524 

af71:e5d0:45ff:229b:e4fa:1ac2:bdeb:d

8a5 

EU Europe CH Switzerland Murten/Morat Fribourg 46.9219 

7.16595 

3fff:ffff:ffff:ffff:ffff:e4b7:14a8:2003 EU Europe FR France Paris Île-de-France 48.8566 2.35222 

2c0f:f020::f:3656 AF Africa ZA South Africa Pretoria Gauteng -25.8521 28.1939 

0123:4567:89ab:: 
geoip2.errors.AddressNotFoundError: The address 

0123:4567:89ab:: is not in the database. 

 

Table 2. MySQL Tests 

Ten IPv4 addresses and their MySQL query results to compare against the results of Table 1. 

IP Address Queried start_ip end_ip continent_code continent 

206.12.154.13 3456932352 3456932863 NA  
North 

America 

1.0.0.125 16777216 16777471 OC Oceania 

76.255.255.254 1291845384 1291845631 NA  
North 

America 



14 
 

62.18.255.1 1041432000 1041432335 EU Europe 

160.167.53.236 2695298048 2695331839 AF Africa 

208.64.0.240 3493855232 3493855743 
 

North 

America 

59.118.72.238 997605376 997617151 AS Asia 

229.181.76.76 Empty set    
49.115.176.86 829423616 829734911 AS Asia 

69.208.83.7 1171275776 1171283967 
 

North 

America 

country_code country city region latititude longitude 

CA  Canada  
Victoria (Harris 

Green) 
British Columbia 48.4244 -123.36 

AU Australia South Brisbane Queensland -27.4767 153.017 

US 

United 

States Chicago Illinois 
41.8781 -87.6298 

IT Italy Rome Lazio 41.818 12.4148 

MA Morocco Rabat (Agdal) 
Rabat-SalÃ©-

KÃ©nitra 
33.9977 -6.84793 

US 

United 

States Toronto Ohio 
40.4642 -80.6009 

TW Taiwan Taipei Taiwan 25.033 121.565 

      
CN China Ewirgol  Xinjiang  42.5246 87.5396 

US 

United 

States Kalamazoo Michigan 
42.2917 -85.5872 

 

Table 3. MySQL Query Times on InnoDB 

Ten IPv4 test IP addresses queried in a MySQL database using the InnoDB engine. The 

databases tested were either indexed, had a primary key, or neither. Times are rounded to the 

nearest hundredth. 

Indexed or Primary Key? Test IP Address Query 1 (s) Query 2 (s) Query 3 (s) 

No 206.12.154.13 2.26 1.97 1.98 
No 1.0.0.125 1.95 1.91 2.07 
No 76.255.255.254 1.96 1.98 2.08 
No 62.18.255.1 2.02 2 2.06 
No 160.167.53.236 2.02 2 2.02 
No 208.64.0.240 1.91 2.02 2.02 
No 59.118.72.238 1.89 2.01 2.08 
No 229.181.76.76 1.94 1.97 2.01 
No 49.115.176.86 1.88 1.96 2.05 
No 69.208.83.7 1.83 1.93 2.08 
Indexed 206.12.154.13 1.98 1.95 1.94 



15 
 

Indexed 1.0.0.125 0 0 0 
Indexed 76.255.255.254 1.9 1.98 2.02 
Indexed 62.18.255.1 1.92 1.93 2.03 

Indexed 160.167.53.236 1.94 1.93 1.79 
Indexed 208.64.0.240 2.48 1.89 2 
Indexed 59.118.72.238 1.94 1.82 2.1 
Indexed 229.181.76.76 0.01 0 0 
Indexed 49.115.176.86 2.09 1.73 2.1 

Indexed 69.208.83.7 2.06 1.72 2.04 

Primary Key 206.12.154.13 2.89 2.13 2.15 
Primary Key 1.0.0.125 0 0 0 
Primary Key 76.255.255.254 0.7 0.76 0.67 

Primary Key 62.18.255.1 0.27 0.26 0.25 
Primary Key 160.167.53.236 1.41 1.33 1.32 
Primary Key 208.64.0.240 2.49 2.16 2.23 

Primary Key 59.118.72.238 0.38 0.37 0.36 
Primary Key 229.181.76.76 2.32 2.3 2.27 
Primary Key 49.115.176.86 0.31 0.31 0.29 
Primary Key 69.208.83.7 0.48 0.46 0.46 

 

Table 4. MySQL Query Times on MyISAM 

Ten IPv4 test IP addresses queried in a MySQL database using the MyISAM engine. The 

databases tested were either indexed, had a primary key, or neither. Times are rounded to the 

nearest hundredth. 

Indexed or Primary Key? Test IP Address Query 1 (s) Query 2 (s) Query 3 (s) Query 4 (s) 

No 206.12.154.13 0.64 0.55 0.6 0.56 
No 1.0.0.125 0.58 0.55 0.65 0.8 

No 76.255.255.254 0.6 0.55 0.63 0.73 
No 62.18.255.1 0.59 0.55 0.63 0.75 

No 160.167.53.236 0.61 0.55 0.6 0.65 

No 208.64.0.240 0.64 0.56 0.59 0.57 
No 59.118.72.238 0.58 0.56 0.64 0.75 
No 229.181.76.76 0.64 0.56 0.58 0.55 
No 49.115.176.86 0.58 0.55 0.64 0.74 
No 69.208.83.7 0.59 0.55 0.64 0.72 

Indexed 206.12.154.13 0.45 0.41 0.44 0 
Indexed 1.0.0.125 0 0 0 0 

Indexed 76.255.255.254 0.59 0.56 0.63 0 
Indexed 62.18.255.1 0.69 0.66 0.7 0 

Indexed 160.167.53.236 0.6 0.57 0.61 0.01 
Indexed 208.64.0.240 0.38 0.35 0.37 0 
Indexed 59.118.72.238 0.64 0.59 0.62 0 



16 
 

Indexed 229.181.76.76 0 0 0 0 
Indexed 49.115.176.86 0.54 0.5 0.53 0 
Indexed 69.208.83.7 0.59 0.55 0.63 0 

Primary Key 206.12.154.13 0.62 0.55 0.59 0 
Primary Key 1.0.0.125 0 0 0 0 
Primary Key 76.255.255.254 0.63 0.55 0.65 0 
Primary Key 62.18.255.1 0.07 0.05 0.07 0 
Primary Key 160.167.53.236 0.63 0.56 0.61 0 

Primary Key 208.64.0.240 0.63 0.56 0.59 0 

Primary Key 59.118.72.238 0.06 0.05 0.06 0 
Primary Key 229.181.76.76 0.64 0.56 0.58 0 
Primary Key 49.115.176.86 0.05 0.04 0.04 0 

Primary Key 69.208.83.7 0.6 0.57 0.63 0 

 

Table 5. MaxMind Query Times 

Sixteen test IP addresses and the amount of time in seconds that it took to find the associated 

data to each IP address using the MaxMind database. Tests where the IP address is not in the 

database are included. 

Test IP Address MMDB Query Time (s) 

206.12.154.13 0.063 

1.0.0.125 0.064 

76.255.255.254 0.064 

62.18.255.1 0.063 

160.167.53.236 0.23 

208.64.0.240 0.756 

59.118.72.238 0.07 

229.181.76.76 0.463 

49.115.176.86 0.073 

69.208.83.7 0.479 

2001:4860:4860::8888 0.084 

2600:fc4f:8b66:: 0.079 

af71:e5d0:45ff:229b:e4fa:1ac2:bdeb:d8a5 0.079 

3fff:ffff:ffff:ffff:ffff:e4b7:14a8:2003 0.079 

2c0f:f020::f:3656 0.075 

0123:4567:89ab:: 0.088 

 

 

 

 



17 
 

Table 6. Comparison Times between MySQL and MaxMind 

Times for 101 queries ran sequentially and in parallel, rounded to the nearest thousandth. 

Query Type Sequential (s) Parallel (s) 

MySQL 0.637 0.406 
MMDB via Python 
Script 7.238 2.04 
MySQL via Python 
Script 6.456 1.786 

 

Figure 1. Webpage View of Squids 

A view of the first ten squids on a test server and their associated geographical data found by the 

new MySQL database. 

 

 

 

 

 

 

 

 

 

 

 

 



18 
 

Figure 2. Webpage View of Nearest Squid 

The “nearest” page on a test server, correctly displaying the closest active squid to my machine’s 

location. 

 


