
Abstract

The heterogeneity of resources in computational grids, such
as the Canadian GridX1, makes application deployment a
difficult task. Virtual machine environments promise to
simplify this task by homogenizing the execution environ-
ment across the grid. One such environment, Xen, has been
demonstrated to be a highly performing virtual machine
monitor. In this work, we evaluate the applicability of Xen
to scientific computational grids. We verify the function-
ality and performance of Xen, focusing on the execution
of software relevant to the LHC community. A variety of
production deployment strategies are developed and tested.
In particular, we compare the execution of job-specific and
generic VM images on grids of conventional Linux clusters
as well as virtual clusters.

1 Report Specification

1.1 Audience

This paper is intended for my supervisors, current and fu-
ture co-op students working in the High Energy Physics
Group, and for the attendees of the Computing and High
Energy Physics 2006 conference in Mumbai, India, in a
slightly modified format.

1.2 Prerequisites

Readers of this paper should have a basic understanding
of virtual machines, as well as a good background in gen-
eral computing knowledge. A knowledge of high energy
physics and the application of high throughput computing
to this field is useful, but not essential.

1.3 Purpose

This paper summarizes and reports on my work during the
Fall 2005 term in the Department of Physics and Astronomy
at the University of Victoria. It contains an in-depth investi-
gation of my major project during the term, which involved
benchmarking the Xen virtual machine environment for use
in high energy physics computing projects.

2 Introduction

With the increasingly wide deployment of particle physics
applications on grids around the world, heterogeneity of
computing environments is becoming a problem. Many
applications, such as the ATLAS simulation code, are de-
signed to run on a specific operating system (OS), and often

a specific version of that OS. This prevents them from har-
nessing the computing power at grid sites that run different
OSs. We have encountered this problem on the Canadian
GridX1 (see Appendix A), where all sites do not run the
same OS. This means that jobs cannot take full advantage
of the resources, but instead must be sent to sites with a
compatible OS. A solution to this problem is to use virtual
machine (VM) technology to create a homogeneous envi-
ronment across the grid for individual applications.

VM technology allows a machine running a base OS to
divide up the physical system resources (i.e. memory, disk,
CPU cycles) among itself and one or more ”virtual” ma-
chines. The base OS controls the VM’s access to the phys-
ical hardware and prevents them from interfering with each
other. The VMs each have their own “slice” of memory and
“disk”, and are allowed to use the CPU in a shared manner,
just as any other multitasking system. The flavour of the
base OS does not matter to software running in the VMs.
Each VM appears to be a real machine to users.

This paper discusses results using one specific VM envi-
ronment, an open source software (OSS) project called Xen
[3], within a Condor-C grid. Most VM technologies cause
a dramatic decrease in performance [4] over the physical
machine due to the extra layer of software running in the
base OS to enable the virtualization. We will show that Xen
avoids this problem in a series of comprehensive bench-
marks.

Other groups have also put considerable effort into
benchmarking Xen’s performance. In ”The Art of Virtu-
alization”, Barham et al. [6] compared native Linux, Xen,
VMWare, and User Mode Linux. And in ”Xen and the Art
of Repeated Research”, Clark et al. [5] repeated the first
group’s tests and confirmed their findings to a large degree.
However, neither of these experiments have specifically ad-
dressed Xen’s performance for HEP applications.

In Section 2, we will discuss HEP-relevant Xen bench-
marks and the implications they have for continued use of
Xen in this environment. In Section 3, we will lay out three
different methods of integrating Xen into a Grid environ-
ment, and show which one is the best. Finally, in Section 4
we will review our findings and conclude.

3 Xen for HEP Applications

Xen uses a technique called “paravirtualization” to maxi-
mize performance. Unlike other virtual machine monitors
such as VMWare, which does full virtualization, Xen only
intercepts “priviledged” instructions. This means that many
of the operations run at full native speed, thereby allowing
Xen to perform better than other VMs. However, the guest
OSs must be modified.

Xen runs as a process in the base OS, called “domain
0” or “dom0”. It requires a kernel patched with the Xen

1



Figure 1: Relative Performance of native Linux (grey) and Xen Linux (black)

source code to be installed. The guest OS also needs to run
a modified kernel, and is called a “domain U” or “domU”.
DomUs are controlled via an administration tool in dom0,
and can be set up to have virtual network interfaces to allow
them to communicate over Ethernet.

3.1 Benchmark Suites

We ran each of six benchmark testsuites on both a native
Scientific Linux 3 install, and the same install running as
a guest image (domU) under Xen. The first three are syn-
thetic tests1, focussing on the performance of specific op-
erations within the system. They are bonnie++, which tests
I/O to memory and disk; UnixBench, which tests process
creation, filesystem performance, and system call through-
put; and Lmbench, which tests interprocess communication
(IPC), system call throughput, and filesystem, I/O, and net-
work performance. The last three were chosen to provide a
realistic view of performance that was relevant to the HEP
community. They include Ab, which provided a realistic
view of the performance of an application that was heavy
on process creation and context switching; a Linux Ker-
nel build, which tests moderately CPU-intensive application
performance; and finally, the ATLAS KitValidation (version
10.0.0 )suite, to test the performance of a standard HEP ap-
plication.

Bonnie++, Ab, the kernel build, and ATLAS were
run three times on each system to generate the results.
UnixBench was run twice and showed little variation in re-
sults; Lmbench once. All tests were performed on the fol-
lowing setup:

1A synthetic benchmark tests a component of the system, whereas ap-
plication benchmarks test the overall system’s performance.

CPU: Athlon XP 2500+ (1826.005 MHz)
RAM: Limited to 256MB2

Disk: Maxtor 6B200P0, ATA DISK drive
Motherboard: ASUS A7VBX-MX SE
Network: Tested only loopback interface.
Domain-0 OS: Fedora Core 4
Domain-U OS: Scientific Linux 3.0.4
Xen version: 2.0.7

3.2 Results

We have included selected graphs (see Figure 1) to illustrate
our findings. The first two show output and input, respec-
tively, from Bonnie++. As one can see, SL3-Xen’s perfor-
mance in writing to the disk is quite close to native SL3,
but even reading from the disk, Xen is only 25% slower.
I/O in general is quite good under Xen, especially when to
and from memory, since the Xen virtualization layer does
some buffering which causes it to appear that Xen is actu-
ally faster in that case.

The next two results in Figure 1 are generated from Lm-
bench results, and this is where we found the weakness in
Xen. All integer and floating point operations performed
exactly the same under SL3-Xen as under native SL3, but
system calls that required the OS to switch into priviledged
mode caused a performance hit of up to 50%. Looking at
”Lmbench syscall” in Figure 1, one can see that a simple
system call (one that did not require the OS to switch kernel
modes) is approzimately the same in both systems. In ”Lm-
bench Read”, however, a simple read system call (that did
cause the OS to switch) took nearly twice as long. This is
due to the extra code needed to perform the virtualization.
This effect is apparent in all operations that require the OS

2



to switch to kernel mode: system calls including read, write,
stat, fstat, open/close, pagefaults, process creation/forking,
and creating and using pipes.

We confirmed this effect using UnixBench, which con-
tributed the next two results in Figure 1. ”Unixbench
Pipe Throughput” in Figure 1 confirms the 50% decrease
in performance under SL3-Xen for kernel-mode tasks.
”Unixbench Process Creation” shows an especially bad per-
formance hit, with SL3-Xen turning in roughly 25% of na-
tive SL3’s throughput.

Moving on to the application-level benchmarks, starting
with ”Ab Walltime” in Figure 1, we can see that Ab took 1.5
times as long under SL3-Xen. However, one must keep in
mind that Ab requires lots of context switches in the course
of operations such as process creation which cause a larger
performance decrease under Xen. This is clearly illustrated
in Figure 1, ”Linux Build Time”. Sl3-Xen, compiling the
same kernel, didn’t even take 1.25 times as long. And fi-
nally, in Figure 1, ”ATLAS Runtime”, one can see that AT-
LAS performs quite well under Xen. This is because the
majority of the operations it performs are arithmetic and
have no performance hit under Xen.

Application performance under Xen depends on the pro-
file of the application. One that creates many processes3,
such as Ab, or uses lots of pipes, will demonstrate an slow-
down of up to 50%. However, one that performs mainly
arithmetic operations, such as ATLAS, will run at near na-
tive speed.

3.3 Practical Xen Issues

We felt it necessary to include a couple of practical issues
that arose in the course of testing Xen as they may be of
interest to others in the community attempting to replicate
this work.

First, since the HEP community frequently uses Redhat
Enterprise Linux 3 (RHEL3) or derivatives, we felt it would
be useful to include information on how to install Xen on
such a system. Although Scientific Linux 3.0.4 worked as a
domU, we found it necessary to install SL3.0.5 as a dom0
instead of earlier versions due to Python versioning issues.
We compiled Xen from source after having problems with
pre-compiled RPMs.

Second, the security of the domUs may prove to be an is-
sue. Although they are protected from each other, there does
not currently exist any security in dom0 to prevent unau-
thorized users from access, modifying, and shutting down
the domUs. Any user that has access to the Xen adminis-
tration tools has essentially ”physical” access to the virtual
machines. Since Xen is still beta software, we hope that this
will be addressed in future releases.

3defined to be a substantial proportion of the total operations the pro-
gram performs.

A stopgap measure to ensure some level of security in
dom0 can be instituted as follows: if the Xen administration
tools are installed in dom0 world-executable, then anyone
who has access to that machine can start, stop, and access
the domUs running on that machine. This can be prevented
one of two ways: first, user accounts can be restricted to
only trusted users. Second, user accounts to dom0 can be
given out freely. By creating a ‘xen’ group, chowning all
xen administration tools to that group, and then placing only
trusted users into this group, one can make reasonably se-
cure the Xen domUs.

However, a savvy user could still compile her own Xen
admin tools and use those to “break in” to the domUs.
Clearly, this security issue needs to be addressed before de-
ploying Xen in a production grid environment.

4 Xen in a Grid Environment

We will now examine three methods for integrating Xen
into a grid environment, starting with a description of our
testbed setup.

1. The user prepares a complete guest OS image contain-
ing the application and input files, uploads the image
to a job repository, and submits a script to fetch and
start a Xen domU.

2. The user does not prepare a custom image, just a job
script, which is uploaded to a job repository. The ex-
ecute machine then starts a generic Xen image, which
in turn fetches the job and runs it.

3. Each physical machine in the cluster runs one or more
persistent Xen domUs. Each domU would have its
own grid certificate, and appear to the world as a per-
manent machine. In this way, a cluster running one OS
could masquerade as another ”virtual” cluster running
a different OS.

5 Conclusions

5.1 Technical

Xen represents a promising solution to the problem of het-
erogeneity among compiled applications, especially sinceit
is slated to be included in an upcoming release of the main
Linux kernel. Our benchmarks have shown that HEP appli-
cations can run satisfactorily under Xen, and, furthermore,
that Xen will run on an operating system commonly used in
HEP computing environments.

3



5.2 Comments on Work Term

I found this workterm to be an excellent learning expe-
rience, both technically and otherwise. Virtual machines
were not something I was familiar with when starting this
job, but I was able to gain a good background understanding
while working by reading papers and documentation, and
gained specific expertise with Xen through my work with
it. I also had an opportunity to refresh my Plone content
management skills by doing small maintenance tasks to the
group website, which is hosted in Zope/Plone.

The only suggestion I have is that there were times when
I felt that I didn’t have enough work; sometimes it is helpful
to have two or three tasks to switch back and forth between
when one comes to a roadblock. Also, the workload toward
the end of the work term seemed much heavier than at the
beginning or middle of the term. But these are relatively mi-
nor, and other students may not have the same work habits.

I enjoyed working in a research environment, and dis-
covered how it is different compared to a corporate or gov-
ernment position. In conclusion, this was a thoroughly re-
warding co-op work term, and I would definitely recom-
mend this job to other students.

A GridX1

GridX1 is a pan-Canadian grid of computational resources
provided by shared facilities at a number of Canadian in-
stitutions. GridX1 resources include Linux-based PBS and
Condor clusters at the Centre for Subatomic Research at the
University of Alberta, the Research Computing Centre at
the University of Victoria, the WestGrid cluster at the Uni-
versity of British Columbia, the Research Computing Sup-
port Group at the National Research Centre in Ottawa, and
the BigMac cluster at the University of Toronto High En-
ergy Physics Group. While the combined resources amount
to approximately 2500 processors and over 100 TB of stor-
age, GridX1 users are given access to only a fraction of
these resources. All sites have gigabit network connectivity
to the national research network provided by CANARIE.
GridX1 has been deployed using version 2 of the Globus
Toolkit [1] distributed in the Virtual Data Toolkit [2]. This
version of the middleware is popular with production grid
deployments due to its maturity, which has resulted in a
relatively stable deployment platform. In addition to the
basic middleware, a number of GridX1-specific tools have
been developed to manage users and monitor tasks and re-
sources. GridX1 utilizes the Condor-G resource manage-
ment system to advertise resources and schedule jobs. The
Condor-G scheduler has proven to be quite effective in its
stability and speed. Through an interface to the LHC Com-
pute Grid, GridX1 has successfully executed over 20 000
jobs for the LHC project.

References

[1] The Globus Tookit, see http://www.globus.org/toolkit/

[2] VDT, The Virtual Data Toolkit, see
http://vdt.cs.wisc.edu/index.html

[3] The Xen virtual machine monitor, see
http://www.cl.cam.ac.uk/Research/SRG/netos/xen/

[4] The Xen virtual machine monitor: Performance, see
http://www.cl.cam.ac.uk/Research/SRG/netos/xen/performance.html

[5] Xen and the Art of Repeated Research, see
http://www.clarkson.edu/class/cs644/xen/files/repeatedxen-
usenix04.pdf

[6]

[7] Bonnie++, see http://www.coker.com.au/bonnie++/

[8] UnixBench, see http://www.tux.org/pub/tux/benchmarks/System/unixb

[9] LMbench - Tools for Performance Analysis, see
www.bitmover.com/Lmbench/

[10] Apache HTTP Server Project, see
http://httpd.apache.org/

[11] Linux Kernel Archives, see http://www.kernel.org

[12] Condor: High Throughput Computing, see
http://www.cs.wisc.edu/condor/

[13] Condor v. 6.7 Manual: Condor-C, see
http://www.cs.wisc.edu/condor/manual/v6.7/53Grid Universe.html

4


