

Clouds in High Energy Physics

Randall Sobie
Institute of Particle Physics
University of Victoria

High Energy Physics

(Particle Physics)

The area of physics that studies the fundamental particles of nature and their interactions.

Accelerators

SLAC Linear Accelerator

Underground labs

Sudbury Solar Neutrino Detector

Orbiting labs

Alpha Magnetic Spectrometer
Space Station

Why is the universe made of matter and not equal amounts of matter/antimatter?

What is origin of Dark Matter and Dark Energy?

We do not know the composition of 95% of the universe

Understanding our World

ATLAS Detector

ATLAS Detector

ATLAS Detector

40 million collisions per second

100,000 collisions selected

200 events per second

WLCG Computing Grid CERN Tier 0

10 Tier1 sites 60+ Tier2 sites

140 PB data

Higgs Discovery in 2012

The ATLAS and CMS experiments see evidence for a Higgs-like particle

Picture shows an event where the Higgs candidate decays to 4 electron-like particles

Search for Higgs decays to 4 "leptons" (electrons or muons)

Number of candidates (vertical axis)

Mass of the candidates (horizontal axis)

We observe an excess of candidates with a mass of 125 proton-masses

Also observed in the CMS experiment

The New York Times

Science

July 4, 2012

WORLD U.S. N.Y. / REGION BUSINESS TECHNOLOGY SCIENCE HEALTH SPORTS OPINION

ENVIRONMENT SPACE & COSMOS

Physicists Find Elusive Particle Seen as Key to Universe

Pool photo by Denis Balibous

Scientists in Geneva on Wednesday applauded the discovery of a subatomic particle that looks like the Higgs boson.

Clouds in High Energy Physics

Long-term preservation of software and data of HEP experiments

Distributed cloud computing using HEP and non-HEP clouds

Utilize special computing resources attached to the detectors

Use commercial clouds for exceptional computing demands

Simplify the management of heterogeneous in-house resources

Using Clouds for Data Preservation

SLAC Linear Accelerator

Electron-positron collision

BaBar Detector

BaBar experiment stopped recording electron-positron collisions in 2008

Using Clouds for Data Preservation

ATLAS/CMS High Level Trigger Clouds

40 million collisions per second

100,000 collisions selected

200 events per second

HLT Farms

These systems are used in real-time when there is colliding beams

The aim is to use the resources during the idle periods for other purposes

Enabled as private OpenStack clouds

See talk by Toni Perez
Wednesday 1100

Private and commercial clouds

Ibex @ CERN (J. van Eldik, T. Bell, B.Moreira)

OpenStack cloud with 5000 cores
Provide batch services and cloud services

HEP using Amazon, Google, Rackspace and others

Star Experiment at RHIC (Brookhaven NL)
Belle Experiment at KEK (Japan)
ATLAS Experiment

Commercial clouds used for exceptional low I/O demands

Challenges: identity management, API compatibility, VM configuration and network connectivity

Costs are higher than our private resources

Distributed cloud computing

Grid of Clouds

Seamlessly use multiple, heterogeneous IaaS clouds for batch workloads

Use dedicated HEP and non-HEP opportunistic resources

Independent of the laaS cloud type

Removes any application requirements from remote site

Support multiple projects

HTCondor JobQueue

UserJob

Distributed cloud status

Operational since Nov 2011

Approximately 250K jobs (Astronomy 500K jobs)

Using 10 clouds for ATLAS jobs 500-1000 simultaneous jobs 12 hour jobs

ATLAS jobs submitted from CERN

Distributed cloud status

April 9 2013 8 clouds 100-120 8-core VMs

The Canadian Astronomy Data Centre
If you have used CADC facilities for your research, please include the following acknowledgment:
This research used the facilities of the Canadian Astronomy Data Centre
operated by the National Research Council of Canada with the support of the Canadian Space Agency.

Nimbus
Victoria(3)
Ottawa
FG Chicago
FG SanDiego
FG Florida

Melbourne
CERN--Ibex
CANARIE
WG-Victoria
NRC-Ottawa
Victoria
FG-San Diego
FG-Chicago
Victoria

Technology innovation for new science

We see ourselves as integrators rather than developers of cloud technology

The OpenStack developer community can help us

Common authentication
Centralized VM image storage
Consistent meta-data
Unique cloud names

Simplify the integration of OpenStack clouds for us

Summary

Understand our Universe

Studying the Higgs
Search for Dark Matter
Difference between antimatter/matter

High Energy Physics

Impact on society

CERN is the birthplace of the WWW
Medical physics
Technology innovation
HQP

Computing

Large distributed systems
Global research network
Novel use of computing technologies

Acknowledgements

Contact information: rsobie@uvic.ca

Web sites: http://rjs.phys.uvic.ca/

http://heprc.phys.uvic.ca/home/