
Federating Clouds for High Energy Physics

OpenStack Summit , May 18-22, 2015

Andre Charbonneau, Martin Conklin, Ronald Desmarais, Colson Driemel,
Colin Leavett-Brown, Randall Sobie, Michael Paterson, Ryan Taylor

Ian Gable
University of Victoria

with significant assistance and support from the
ATLAS and Belle II Collaborations, and CERN IT

Ian Gable, University of Victoria

Outline

What is experimental High Energy Physics?

What our computing workloads look like?

Components of our Distributed Cloud

Cloud Scheduler: Batch Job Management

Glint: VM image distribution

Shoal: Squid cache discovery

Some results

2

Ian Gable, University of Victoria 3

27 km ring

Large Hadron
Collider

Ian Gable, University of Victoria 4

Ian Gable, University of Victoria 5

Ian Gable, University of Victoria 6

ATLAS
Detector
2005

Ian Gable, University of Victoria 7

ATLAS
Detector
2014

Ian Gable, University of Victoria 8

40 million
collisions
per second

Ian Gable, University of Victoria 9

Belle II
Detector

KEK
Laboratory

Ian Gable, University of Victoria

Scale and other experiments

Each interesting ‘event’ stored on disk

ATLAS experiment roughly 170 PB on disk today, now
growing all the time

LHC Experiments and other High Energy Physics
experiments sure to grow to exascale in coming years.

Now down to the details.

10

Ian Gable, University of Victoria

High Energy Physics Computing workloads

• High Throughput Computing workload composed of
mostly embarrassingly parallel tasks (jobs).

• Jobs for HEP are usually 1-24 hours in length and can be
done single core, or multi core jobs (memory saving)

• Jobs are either Monte Carlo simulation of collisions or
analysis of real collision data from the detector readout

• Most of the workload today is run on ethernet
connected Linux clusters from 500 - 10000 cores at
Research and Education institutions around the world

• On any given day there is roughly ~300K cores running
HEP jobs for the Worldwide LHC Computing Grid
(collection of non-cloud federated Linux clusters)

11

Ian Gable, University of Victoria

Our IaaS timeline

12

Can we
use Xen?
2005

We discover
Nimbus
Project
2006

Amazon
EC2
2007

OpenStack
Arrives
2010

Multiple
Nimbus
Clouds
2008

Major Traction in HEP

CERN
goes

OpenStack
2013

Multiple
OpenStack

Clouds
2012

Ian Gable, University of Victoria

Today’s Problem and Opportunity

We wish to be able to run across multiple clouds without having any
‘special’ relationship with those cloud providers. In other words we
can’t impose any requirements on them.

13

- OpenStack

- EC2 & GCE

Ian Gable, University of Victoria

Components of the Solution

14

Cloud
Scheduler

Shoal

Glint

manage Jobs:

manage VM instances:

Discover Web Caches:

Manage VM images:

The VM itself:

CernVM
+CVMFS

Ian Gable, University of Victoria 15

Negotiator

Schedd

Collector

Master

Head Node

Worker Node 1

Startd

...
Worker Node 2

Startd

Worker Node 2

Startd

Ian Gable, University of Victoria 16

HTCondor

Am
az

on
 E

C2

Cloud Interface
(EC2)

VM
Node

uCernVM

VM
Node

CloudScheduler

Sc
he

du
le

r s
ta

tu
s

co
m

m
un

ic
at

io
n

O
pe

nS
ta

ck
 C

lo
ud

 1 Cloud Interface
(OpenStack)

VM
Node

uCernVM

VM
Node

O
pe

nS
ta

ck
 C

lo
ud

 N Cloud Interface
(OpenStack)

VM
Node

uCernVM

VM
Node

...

G
oo

gl
e

Co
m

pu
te

 E
ng

in
e Cloud Interface

(GCE)

VM
Node

custom
image

VM
Node

Create, Destroy,
and Status IaaS
Calls

VM registration
and Job
submission

Batch Jobs

Batch Systems Calls
IaaS Calls

Ian Gable, University of Victoria 17

universe = vanilla

=== job parameters ===
dir = $ENV(HOME)/logs/analy
output = $(Dir)/$(Cluster).$(Process).out
error = $(Dir)/$(Cluster).$(Process).err
log = $(Dir)/$(Cluster).$(Process).log
executable = runpilot3-wrapper.sh
arguments = -s ANALY_IAAS -h ANALY_IAAS -p 25443 -w https://pandaserver.cern.ch -u user
environment = "ATLAS_SITE_NAME=IAAS APF_PYTHON26=1 RUCIO_ACCOUNT=pilot"
request_cpus = 1
request_memory = 2000
request_disk = 10000000
requirements = VMType =?= "atlas-worker" && Target.Arch == "x86_64"
x509userproxy = $ENV(HOME)/atlaspt.proxy

=== job behaviour ===
stream_output = False
stream_error = False
notification = Error
should_transfer_files = YES
when_to_transfer_output = ON_EXIT_OR_EVICT

=== VM configuration for cloud scheduler ===
+VMName = "PandaCern"
+VMAMI = "ucernvm-prod.1.18-13"
+VMInstanceType = "c8-30gb-430"
+VMKeepAlive = "30"
+VMJobPerCore = "True"
+TargetClouds = "IAAS"
+VMAMIConfig = "/srv/userdata/IAAS.yaml:cloud-config,/srv/userdata/cernvm-data.txt:ucernvm-config"
+VMUseCloudInit = "True"
+VMInjectCA = "False"

$ condor_submit atlas-sub.sub

Ian Gable, University of Victoria 18

[chameleon]
auth_url: https://proxy.chameleon.tacc.utexas.edu:5000/v2.0
cloud_type: OpenStackNative
regions: regionOne
tenant_name: FG-54
vm_domain_name: .novalocal
key_name: rd_key
networks: FG-54-HEP-NET
security_group: default
username: *******
password: ********
secure_connection: true
enabled: false

[cc-east]
auth_url: https://east.cloud.computecanada.ca:5000/v2.0
cloud_type: OpenStackNative
regions:
tenant_name: Belle
networks: Belle_network
key_name: rd_key
vm_domain_name: .openstacklocal
security_group: default
username: ******
password: ********
secure_connection: true
enabled: false

Cloud Scheduler Define Resources Available
Define resources available:

/etc/cloudscheduler/cloud_resources.conf

Ian Gable, University of Victoria

Example Operational Task

19

State of the System on Monday Morning:

• 1000 Cores of Belle-11 jobs running
• Each job is roughly 12 hours long and each job is in a different

state of completion
• There are several thousands jobs waiting in the Condor job

queue
Email on Friday:

“Hey Mike,

We are taking cloud-x down Tuesday at
9:00 central time can you make sure you
aren't running anything important.

Cheers,

The friendly OpenStack Admins”

Goal:

No users jobs are killed and all VMs are shutdown cleanly before
9:00 Tuesday

Operations on Monday Morning:

Prevent any more VMs from being booted:

$ cloud_admin -d cloud-x

Stop submitting new jobs to running VM and shutdown the VM once all
jobs are complete:

$ cloud_admin -o -c cloud-x -a https://github.com/hep-gc/cloud-
scheduler https://github.com/hep-gc/cloud-scheduler

https://github.com/hep-gc/cloud-scheduler
https://github.com/hep-gc/cloud-scheduler

Ian Gable, University of Victoria

Problem: Too many clouds to manage VM images manually

20

Solution: Glint Image Distribution Service

Ian Gable, University of Victoria

Glint

21

GLINT

Keystone

G
la

nc
e Image B

Image A

Image A

Cloud 2

Keystone

G
la

nc
e Image A

Cloud 1

Keystone

G
la

nc
e Image C

Image A

Cloud 3

Image
Cache

Image A

Image A

Ian Gable, University of Victoria

OpenStack with Glint

22

OpenStack Horizon

Keystone Glance Glance
PagesGlint Glint

 Pages

API CLI

OpenStack

Glint Additions

Ian Gable, University of Victoria

Horizon Interface with Glint Pages

23

Ian Gable, University of Victoria

Goals for Glint

PyPI:

https://pypi.python.org/pypi/glint-service/

launchpad:

https://launchpad.net/python-glint

Github:

https://github.com/hep-gc/glint-service

more details contact Ron Demarais
<rd@uvic.ca>

24

We have learned a lot this week.

Take advantage of keystone
federation. User won’t have to
provide creds for multiple clouds

Take Advantage of Glance Tasks

Ultimate goal to have the
functionality in Glint available as a
part of Keystone and Glance

https://pypi.python.org/pypi/glint-service/
mailto:rd@uvic.ca

Ian Gable, University of Victoria 25

The Virtual Machine Image

Ian Gable, University of Victoria

CernVM and CVMFS

CernVM is RHEL compatible HEP
software appliance in only 20 MB

26

initrd: CernVM-FS + µContextualization

AUFS R/W Overlay

OS + Extras

Kernelµ
C

er
nV

M
Sc

ra
tc

h
H

D

User Data (EC2, OpenStack, . . .)

FuseAUFS

CernVM-FS
Repositories

12MB

100MB

Figure 1. A µCernVM based virtual machine is twofold. The µCernVM image contains a Linux
kernel, the AUFS union file system, and a CernVM-FS client. The CernVM-FS client connects to
a special repository containing the actual operating system. The two CernVM-FS repositories
contain the operating system and the experiment software.

store the CernVM-FS cache. Note that the scratch hard disk does not need to be distributed. It
can be created instantaneously when instantiating the virtual machine as an empty, sparse file.

The init ramdisk contains the CernVM-FS client and a steering script. The purpose of the
steering script is to create the virtual machine’s root file system stack that is constructed by
unifying the CernVM-FS mount point with the writable scratch space. To do so, the steering
script can process contextualization information (sometimes called “user data”) from various
sources, such as OpenStack, OpenNebula, or Amazon EC2. Based on the contextualization
information, the CernVM-FS repository and the repository version is selected.

The amount of data that needs to be loaded in order to boot the virtual machine is very little.
The image itself sums up to some 12 MB. In order to boot Scientific Linux 6 from CernVM-FS,
the CernVM-FS client downloads an additional 100 MB. The CernVM-FS infrastructure used to
distribute experiment software can be reused. In comparison, the (already small) CernVM 2.6
virtual appliance sums up to 300 MB to 400 MB that needs to be fully loaded and decompressed
upfront before the boot process can start. As a result, a booting µCernVM virtual machine starts
practically instantaneously so that it can be, for instance, integrated with a web site that starts a
virtual machine on the click of a button. An example of such a web site is a volunteer computing
project by the CERN theory group [11].

3. The µCernVM root file system stack

At the beginning of the Linux boot process, in the so called early user space, the Linux kernel uses
a root file system in memory provided by the init ramdisk. The purpose of the early user space is
to load the necessary storage device drivers to access the actual root file system. Once the actual
root file system is available, the system switches its root file system to the new root mount point
after which the previous root file system becomes useless and is removed from memory.

Figure 2 shows the transformation of the file system tree in the early user space in µCernVM.
First, the scratch hard disk is mounted on /root.rw. µCernVM grabs the first empty hard disk
or partition attached to the virtual machine, or remaining free space on the boot hard disk. It
automatically partitions, formats, and labels the scratch space. Due to the file system label,
µCernVM finds an already prepared scratch space on next boot. The scratch space is used as
a persistent writable overlay for local changes to the root file system and as a cache for the

3

http://cernvm.cern.ch

CVMFS is a caching network file system
based on HTTP and optimized for
software, i.e. millions of small files

erarchy only for lookups; the actual data transfer can take
place among any two XRootD cache nodes.

3. CONTENT-ADDRESSABLE STORAGE
With content-addressable storage (CAS), files carry a file

name that depends on their content rather than on their lo-
cation in a directory tree or on a storage device. The content
address is retrieved from a cryptographic hash (or at least a
collision free hash) of the content. Content-addressable stor-
age has many advantages, in particular for software reposi-
tories

• Data integrity is trivial to verify by re-hashing files.

• Maintaining cache consistency is trivial as files are im-
mutable and do never expire.

• Identical files in different locations are mapped to the
same content-addressable file. Hence, CAS provides
content de-duplication.

• The hash key used as file name can be re-used for dis-
tributed hash tables and key-value stores.

File de-duplication has been observed to be very useful with
LHC experiment software. From release to release only a
fraction of all files change. By de-duplication the number of
files can be reduced by more than a factor of 5. With file
compression, the volume can be reduced by a further factor
of 2–3.

Besides these advantages, there are also some disadvan-
tages of CAS: Converting from location-based addressing to
content-addressable storage is compute-intensive. Still, it
is worthwhile to use CAS for the “write once read many”
(WORM) access pattern of software and experiment data.
Cryptographic hashes might get broken, which has hap-
pened in case of MD5 for instance. In such a case, all files
must be re-hashed using another algorithm because other-
wise an attacker could inject corrupted files somewhere in
the distribution chain.

A file system interface on top of CAS requires means to
translate the directory location into CAS. This is done by
file catalogs that map the directory location to the hash key
of a file. We store such catalogs in plain files that can be
cached as well. Moreover, file catalogs act as a pre-cache of
meta-data; a single file catalog request results in a bulk of
meta-data.

With millions of directory entries, such a catalog grows to
the order of Gigabytes. Hence, we partition large directory
trees into many file catalogs. Naturally, such partitioning is
done at the top-level directories of the software releases. Us-
ing hash trees, i. e. storing the content hash key of a sub file
catalog in the parent catalog, the content hash key of a root
file catalog is sufficient to re-construct an entire directory
hierarchy. We cryptographically sign the root file catalog
in order to ensure data authenticity. The content hash key
of a root file catalog is also used as a means to publish file
system updates. New root hash keys can be propagated ei-
ther by using an expiry time stamp or by a publish-subscribe
system.

4. CDN FOR SMALL FILES
CernVM-FS uses a content delivery network (CDN) to

transfer the CAS data from the software release publisher

Stratum 0
read/write

Switzerland

United
Kingdom

U.S. East
Coast

Taiwan

St
ra
tu
m
1

P
ub

lic
M
irr

or
s

Stratum 2
Private
Replicas

Proxy
Hierarchy

Figure 1: HTTP content delivery network: Replica
servers are arranged in a ring topology (Stratum 0
– Stratum 2). One protected r/w instance feeds a
few reliable, public, and globally distributed mirror
servers. Proxy servers fetch content from the closest
public mirror server. The public mirror server can
in turn be a master for private mirror servers, for
instance in a large computing center.

to the worker nodes. The problem at hand requires a fault-
tolerant CDN that scales to the order of 105 read-only clients
and ensures data integrity and authenticity. The scattered
resources used for LHC computing entail restrictions on the
network protocol options. For “volunteer” worker nodes be-
hind a NAT layer, as well as for many Grid sites, Internet
connectivity is restricted to a few standard protocols, most
notably, HTTP.

In combination with a hierarchy of web caches, HTTP
scales smoothly to the size of the LHC Grid and beyond.
Our CDN is shown in Figure 1. We currently use 2–3 levels
of web caches: a frontend cache at the Stratum 1 servers,
local cache servers at the sites and an optional layer of re-
gional cache servers for distributed sites such as the Nordic
Data Grid Facility. The CERN Stratum 1 has currently 40–
50 WLCG sites with a total number of 20 000–25 000 worker
nodes connected to it. The observed average load on the
CERN Stratum 1 webserver is 200KB/s and 2–3 requests
per second, the load on the Stratum 1 frontend caches is
500KB/s and 10 requests per second.

Besides reducing the load on the Stratum 1 side, local
caches reduce the latency on the local site. Latency is an
issue especially for experiment analysis software, as it con-
sists of very many small files. 50% of all files are smaller
than 4 kB and 80% of all files are smaller than 16 kB. The
same statistics over actual requested files reveals 99% of all
files being smaller than 5MB. The HTTP header overhead
does not matter very much as a typical request is anyway
answered using 1–2 network packets. Using HTTP keep-
alive, we have previously shown that the TCP/HTTP stack
outperforms AFS’s UDP/Rx stack [7].

Fault-tolerance is obtained by client-side fail-over logic
and horizontal scaling. The local web caches are just dupli-
cated. A single source web server, however, still is a single
point of failure because each cache miss leads to a request on
the next-higher cache level. If the source web server is tem-
porarily unavailable, all requests that the Stratum 1 caches
cannot handle would result in an I/O error of the CernVM

51

comes with it’s own CDN!

Requires fast and near HTTP cache

The caching challenge on IaaS cloud

When booting VMs on different arbitrary clouds they don’t
know which squid they should use

In order to work well, VMs need to able to access a local
web cache (squid) to be able to efficiently download all the
experiment software and now OS libraries they need to run

If a VM is statically configured to access a particular cache it
can be slow (Geneva Vancouver for example) and it can
get overloaded

27

Ian Gable, University of Victoria

Shoal

28

Shoal
Server

shoal_agent

REST

AMQP

Cloud Y

shoal_agent

Regular Interval AMQP
message
Publish: IP, load, etc

REST call
Get nearest squids

shoal_client

VM Node

Cloud X

shoal_client

VM Node

Squid Cache

shoal_agent

Squid Cache Squid Cache

uses the highly Scalable AMQP
protocol to advertise Squid servers
to Shoal

uses GeoIP information to
determine which is the closest to
each VM

Squids advertise every 30 seconds,
server verifies if the squid is
functional

https://github.com/hep-gc/shoal

https://github.com/hep-gc/shoal

Ian Gable, University of Victoria

Some Results

29

CERN Instance Europe UVic Instance (Americas+Australia)

Belle II Experiment

CERN

Canada

Australia UK

Cumulative ATLAS Jobs

Cloud
500K
jobs

Ian Gable, University of Victoria

Summary

30

CloudScheduler/HTCondor flexible way to run Batch
Jobs on Clouds.

Key enabling technologies for this:
CVMFS + CernVM
Shoal: dynamic Squid cache Publishing
Glint: VM Image Distribution

Current users ATLAS, Belle II, CANFAR, Compute
Canada HPC consortium

Ian Gable, University of Victoria

Acknowledgements

31

University of Victoria
Systems

Ian Gable, University of Victoria 32

CERN

TRIUMF

T2 T2 T2

National
Facility X

T2 T2 T2

CERN

TRIUMF

T2
T2

T2

National
Facility X

T2

T2
T2

Data movement 2010

Data movement 2015

