Distributed IaaS Clouds and 100G Networking for HEP applications

HPCS 2013 June 3

Ian Gable

A. Agarwal, A. Charbonneau, C. Leavett-Brown, K. Lewall, R. Impey, M. Paterson, W. Podiama, R. J. Sobie, R. Taylor
University of Victoria, NRC

M. Hay, D. McWilliam Y. Savard, T. Tam
BCNet and CANARIE

Caltech and University of Michigan
Typically, computing tasks have been moved to the data.

With Infrastructure-as-a-Service clouds we want to move the data to computing on demand as resources become available.

Networks are the key.
Outline

Running ATLAS jobs on distributed IaaS cloud
 – Motivation
 – Software required
 – Results from 14 months of production operation

100G network demonstrations at Super Computing 2012
 – HEP networks today
 – Physical setup
 – Results
ATLAS Experiment in One Slide

- A particle detector at CERN which gathers a vast amount of data (100+ PB in last 2 years)
- Analysis and simulation computational tasks (i.e. jobs) are embarrassingly parallel
- Most of the computation is completed today on the WLCG Grid

See Reda Tafirout’s talk:
“ATLAS Experiment: Big Data + Big Compute = Big Discovery”
Immediately following this talk
Many facilities are evolving into clouds

Can we use these sites in a federated way?
And integrate them into our existing systems?
What are some of the challenges?

Distributed cloud computing system for ATLAS
Production system for ATLAS experiment
Integrated into the WLCG
HTCondor JobQueue

UserJob

Cloud Scheduler

Boot User-VM on a cloud

User VM

IaaS Clouds
VM registers with HTCondor

HTCondor
JobQueue

UserJob

Cloud Scheduler

User VM

IaaS Clouds

Randall Sobie IPP/UVictoria
Cloud Scheduler

HTCondor JobQueue

UserJob

Dispatches UserJob to VM

Remote VM image repository (Nimbus clouds)
Upload VMs to OpenStack clouds
Current clouds

Nimbus
Victoria(3)
Ottawa
FutureGrid Chicago
FutureGrid SanDiego
FutureGrid Florida

OpenStack
Melbourne-NECTAR
CERN-Ibex
CANARIE-West
CANARIE-East
Imperial College-GridPP
Cloud evaporation and condensation

Number of 8-core VMs in May 2013
VMs in 2013

OpenStack Clouds

Nimbus Clouds (and NECTAR)

8-core VMs at each site
Fully integrated as an ATLAS Grid site
(grid operations, monitoring, ...)
April 2012

Integrated number of jobs (380,000)

Weekly jobs (12,500 in 2013)

Peak over 1000 simultaneous jobs
April 2013
Moving on to Networking
HEP networks today
At Super Computing 2012 in November 2012 in Salt Lake City a we worked together to set new records for Wide Area Network transfer.

CANARIE, BCNet, Internet 2
3x 100G circuits into a single conference booth
SC12 WAN

Caltech – Victoria – Michigan
Efficient LHC Data Distribution across 100GE Networks

Seattle to BCNet

OME 6500

OME 6500

Univ of Victoria

4 x 40G QSFP SR

40GE Gen3 Servers

Univ of Michigan

OME 6500

OME 6500

710 STARLIGHT

100G

SDN

40GE Gen3 Server

Internet2, Caltech
818W LA

OME 6500

OME 6500

Internet2
SLC

SDN

100G

100G

3 x 40G QSFP SR

Alcatel SR-12 100/40G Switch-Router

40GE Gen3 Servers

Caltech Booth

Cisco M6 100GE DWDM

100G

100G

100G

Alcatel SR-12 100/40G Switch-Router

Juniper MX480 100/40G Switch-Router

40GE Gen3 Servers

DDN SFA-12K

100G

9 x 40G QSFP SR
Juniper MX480
Ciena OME 6500
SC Show Floor 40G and 100G equipment

- 4x SuperMicro Servers
- SSD Storage
- 2x SuperMicro Lustre clients
- Data Direct Networks Storage 120 TB
- 2x Dell R720 Lustre clients
- Alcatel-Lucent 3x100GE 15x40GE
- Juniper MX480 1x100GE 4x40GE
- 2x SuperMicro Servers FusionIO Storage
- 2x Dell R520 Lustre clients
- Force10/Dell Z9000 (40GE x 32)
- 33 Mellanox ConnectX-3 VPI cards
Alcatel 3 x LR4 100G CFP
Force 10 z9000 32x40G Ethernet
Day One: Memory to Memory

Memory to Memory Transfer UVic to SC
3 Machine at UVic to Three Machines at SC

At SC11 this was hard to achieve
Disk to Disk

4 IBM x3650 with OCZ SSDs at UVic to SSD servers and Lustre clients mounting DDN SFA12K 1500 km

Peak 96 Gbps sustained 85 Gbps for 10 hours
Remote Direct Memory Access over Ethernet
5% CPU Utilization
1 Server in the Booth and two Servers at Caltech
337 Gbps peak
Memory to
Memory
Rate equivalent to
3PB per day
Successes

IaaS Production system
- ATLAS IaaS distributed cloud in production for 14 month
- CANFAR (astronomy) using the same technology
- Federated system 10+ clouds over 3 continents, HEP and non-HEP sites
- 1000 simultaneous jobs
- Dynamic system that handles changing availability

100G networking
- 96 Gbps disk to disk using ‘modest’ set of hardware over 1500 km
- 337 Gbps memory to memory using 3 sites
- Promising demonstration of RDMA over Ethernet.
- Possible to efficiently use 100G networks at the end site
Summary

Clouds are increasingly available to the research community.

Distributed cloud computing is a viable solution for scientific computing

No observed limits to the system scalability in low I/O cases.

We expect 100G networks to remove barriers to high I/O applications on clouds.
Industrial Partners

- Ciena
- IBM
- Juniper Networks
- Dell
- Mellanox Technologies
- OCZ Technology
- DataDirect Networks
- Fusion-iO