An Overview of Cloud Scheduler

Frank Berghaus

Overview

I. Our GroupII. Cloud SchedulerIII. The ATLAS Grid of CloudsIV. Belle II & Cloud Scheduler

I. Our Group

- Randall Sobie
 - Project Leader
- Frank Berghaus
 - Application Specialist
- Ian Gable
 - Network Specialist
- Colin Leavett-Brown
 - Cloud Developer
- Michael Paterson
 - Cloud Developer
- Ron Demerais
 - Software Engineer

- Ryan Taylor
 - Computing Specialist
- Andre Charbonneau
 - Computing Specialist
- Collaborating with
 - Nimbus
 - CERN
 - Caltech, U. Michigan
 - Internet 2
 - ESNet
 - NECTAR

Our Website: http://heprc.phys.uvic.ca/

Nov 12, 2013

Our Projects

- Cloud Scheduler: Cloud federation software
- Shoal: Dynamic squid management
- ATLAS cloud production system
- ATLAS and virtual tier 2 management
- Data intensive applications on distributed clouds
- Software Defined Networks for cloud applications
- Virtual machine management and distribution
- Puppet contextualization of VMs for HEP applications

Overview

I. Introduction to the GroupII. Cloud Scheduler

II. Cloud Scheduler

- Cloud Scheduler is a python package for managing VMs on IaaS clouds
- Users submit HTCondor jobs
 - Optional attributes specify virtual machine properties
- Developed at UVic and NRC since 2009
- Used by ATLAS, CANFAR, and BaBar
 - The Code: https://github.com/hep-gc/cloud-scheduler
 - Website: http://cloudscheduler.org/
 - Publication: http://arxiv.org/abs/1007.0050

Key Features of Cloud Scheduler

- Dynamically manages quantity and type of VMs in response to user demand
- Easily connects to many laaS clouds, and aggregates their resources
- Provides laaS resources in the form of an ordinary HTCondor batch system
- Generic tool, not grid or HEP specific pip install cloud-scheduler

Step 1

- Supported cloud types:
 - OpenStack
 - Nimbus
 - StratusLab
 - OpenNebula
 - Amazon EC2
 - Google Compute Engine

 Research and commercial clouds made available through a cloud interface

Step 2

- User submits job to
 HTCondor
- Job scheduler may not have any resources yet

Job Scheduler

Cloud Scheduler

Step 3

- Cloud scheduler
 - Detects waiting jobs in Condor queue
 - Makes a request to boot VMs matching the job requirements

Overview

Introduction to the Group
 Cloud Scheduler
 The ATLAS Grid of Clouds

Grid Job Flow

Compute Element is tightly coupled to batch system

Cloud Job Flow (on the Grid)

• Cloud Scheduler is loosely coupled to cloud interface

Cloud Job Flow (on the Grid)

Easy to connect and use many clouds

The ATLAS "Grid of Clouds"

Cloud Production in ATLAS

Nov 12, 2013

ATLAS Cloud Workload

- ATLAS jobs and virtual machines over the last two weeks
- VMs retiring in response to job queue

- Virtual machines with 8 cores
- VMs on Nimbus clouds have 1 week lifetime

Overview

I. Introduction to the GroupII. Cloud SchedulerIII. The ATLAS Grid of CloudsIV. Belle II & Cloud Scheduler

Belle II & Cloud Scheduler

Nov 12, 2013

Belle II VM Images

- Based on CernVM 2.7.2 (SL5)
- Belle II software is made available over cvmfs
- Puppet contextualizes images on boot

https://github.com/MadMalcolm/atlasgce-modules

- Developed for ATLAS, Belle II required minor modifications
- Same image can work on any
 - Hypervisor (xen or kvm)
 - Cloud Type (OpenStack, GCE, Nimbus, EC2, etc.)
 - Cloud Location

Advantages to Belle II

- Layer above the resources
- Access many resource sites, using few Cloud Scheduler servers
- No Belle-specific configuration or services needed at resource site
- Opportunistic integration of cloud resources

Cloud Scheduler Summary

- Federate HEP and non-HEP academic resources in single queue
- Share resources with other projects
- Used in production by ATLAS and CANFAR for over 1.5 years
- Successfully integrated with DIRAC
- Access to non-HEP funded cloud development group
- Limited only by resource availability
- Complimentary to VMDIRAC

Acknowledgements

Compute • calcul

Backup

Connecting Additional Clouds

- Add a few lines to a configuration file
 - /etc/cloudscheduler/cloud_resources.conf

[MyCloud] host: mycloud.example.org cloud_type: OpenStack vm_slots: 50 networks: private enabled: true

- Get authorization on the cloud
 - Secret key or x509 proxy
- Test booting virtual machines

Optional Job Description

User requirements

+VMName = "cernvm-batch-node-2.7.2-x86_64" +VMCPUArch = "x86_64" +VMAMI = "mouse01.heprc.uvic.ca:ami-00000070" +VMInstanceType = "mouse01.heprc.uvic.ca:m1.large" +VMMem = "8192" +VMCPUCores = "4"

Shoal: Dynamic Squid Management

- Need robust network of squids – especially with µCernVM
- Boot squid VMs in each cloud on demand
- VMs automatically discover and use local squids
- CHEP 2013 Poster
- WLCG HTTP Proxy Discovery Task Force
- Code:

https://github.com/hep-gc/shoal

• Paper:

http://arxiv.org/abs/1311.0058

Nov 12, 2013

HTCondor

- Designed as cycle scavenger
- Ideal as job scheduler in a dynamic environment
- Job description specifies VM image and requirement:
- Nimbus requires:
 - VM image URL
 - User proxy

- OpenStack Requires
 - VM image AMI
 - Instance Type

• Cloud scheduler supports default settings

