Overview

I. Our Group
II. Cloud Scheduler
III. The ATLAS Grid of Clouds
IV. Belle II & Cloud Scheduler
I. Our Group

- **Randall Sobie**
 - Project Leader
- **Frank Berghaus**
 - Application Specialist
- **Ian Gable**
 - Network Specialist
- **Colin Leavett-Brown**
 - Cloud Developer
- **Michael Paterson**
 - Cloud Developer
- **Ron Demerais**
 - Software Engineer
- **Ryan Taylor**
 - Computing Specialist
- **Andre Charbonneau**
 - Computing Specialist

Collaborating with
- Nimbus
- CERN
- Caltech, U. Michigan
- Internet 2
- ESNet
- NECTAR

Our Website: http://hep.prc.phys.uvic.ca/
Our Projects

- *Cloud Scheduler*: Cloud federation software
- *Shoal*: Dynamic squid management
- ATLAS cloud production system
- ATLAS and virtual tier 2 management
- Data intensive applications on distributed clouds
- Software Defined Networks for cloud applications
- Virtual machine management and distribution
- Puppet contextualization of VMs for HEP applications
Overview

I. Introduction to the Group
II. Cloud Scheduler
II. Cloud Scheduler

- Cloud Scheduler is a python package for managing VMs on IaaS clouds
- Users submit HTCondor jobs
 - Optional attributes specify virtual machine properties
- Developed at UVic and NRC since 2009
- Used by ATLAS, CANFAR, and BaBar

 - The Code: https://github.com/hep-gc/cloud-scheduler
 - Website: http://cloudscheduler.org/
 - Publication: http://arxiv.org/abs/1007.0050
Key Features of Cloud Scheduler

- Dynamically manages quantity and type of VMs in response to user demand
- Easily connects to many IaaS clouds, and aggregates their resources
- Provides IaaS resources in the form of an ordinary HTCondor batch system
- Generic tool, not grid or HEP specific

pip install cloud-scheduler
Step 1

- Supported cloud types:
 - OpenStack
 - Nimbus
 - StratusLab
 - OpenNebula
 - Amazon EC2
 - Google Compute Engine

- Research and commercial clouds made available through a cloud interface
Step 2

- User submits job to HTCondor
- Job scheduler may not have any resources yet
Step 3

- Cloud scheduler
 - Detects waiting jobs in Condor queue
 - Makes a request to boot VMs matching the job requirements
Step 4

• Clouds boot VMs
• Each VM attaches to the condor queue and processes jobs
• Cloud scheduler retires VM when no jobs require that VM
Overview

I. Introduction to the Group
II. Cloud Scheduler
III. The ATLAS Grid of Clouds
Grid Job Flow

- Compute Element is tightly coupled to batch system
Cloud Job Flow (on the Grid)

- Cloud Scheduler is loosely coupled to cloud interface
Cloud Job Flow (on the Grid)

- Easy to connect and use many clouds
The ATLAS “Grid of Clouds”
Cloud Production in ATLAS

- Started operation April 2012

Completed over 1M Jobs

- Similar performance to dedicated facilities at
 - University of Victoria
 - McGill University
 - University of Alberta
 - University of Toronto
ATLAS Cloud Workload

- ATLAS jobs and virtual machines over the last two weeks
- VMs retiring in response to job queue
- Virtual machines with 8 cores
- VMs on Nimbus clouds have 1 week lifetime
Overview

I. Introduction to the Group
II. Cloud Scheduler
III. The ATLAS Grid of Clouds
IV. Belle II & Cloud Scheduler
Belle II & Cloud Scheduler

- Integrated into DIRAC
- Running Belle jobs since November 8
- Using two test clouds

Thanks to Miyake-san and Malachi!
Belle II VM Images

- Based on CernVM 2.7.2 (SL5)
- Belle II software is made available over cvmfs
- Puppet contextualizes images on boot

 https://github.com/MadMalcolm/atlasgce-modules

 - Developed for ATLAS, Belle II required minor modifications
 - Same image can work on any
 - Hypervisor (xen or kvm)
 - Cloud Type (OpenStack, GCE, Nimbus, EC2, etc.)
 - Cloud Location
Advantages to Belle II

- Layer above the resources
- Access many resource sites, using few Cloud Scheduler servers
- No Belle-specific configuration or services needed at resource site
- Opportunistic integration of cloud resources
Cloud Scheduler Summary

- Federate HEP and non-HEP academic resources in single queue
- Share resources with other projects
- Used in production by ATLAS and CANFAR for over 1.5 years
- Successfully integrated with DIRAC
- Access to non-HEP funded cloud development group
- Limited only by resource availability
- Complimentary to VMDIRAC
Acknowledgements
Backup
Connecting Additional Clouds

- Add a few lines to a configuration file
 - `/etc/cloudscheduler/cloud_resources.conf`
  ```
  [MyCloud]
  host: mycloud.example.org
  cloud_type: OpenStack
  vm_slots: 50
  networks: private
  enabled: true
  ```

- Get authorization on the cloud
 - Secret key or x509 proxy

- Test booting virtual machines
Optional Job Description

Run-environment requirements
Requirements = VMType == "cernvm-belle-node-2.7.2-x86_64" && \
 Arch == "x86_64"

User requirements
+VMName = "cernvm-batch-node-2.7.2-x86_64"
+VMCPUArch = "x86_64"
+VMAMI = "mouse01.heprc.uvic.ca:ami-00000070"
+VMInstanceType = "mouse01.heprc.uvic.ca:m1.large"
+VMMem = "8192"
+VMCPUcores = "4"
Shoal: Dynamic Squid Management

- Need robust network of squids – especially with µCernVM
- Boot squid VMs in each cloud on demand
- VMs automatically discover and use local squids
- CHEP 2013 Poster
- WLCG HTTP Proxy Discovery Task Force
- Code: https://github.com/hep-gc/shoal
HTCondor

- Designed as cycle scavenger
- Ideal as job scheduler in a dynamic environment
- Job description specifies VM image and requirement:

 - Nimbus requires:
 - VM image URL
 - User proxy

 - OpenStack Requires
 - VM image AMI
 - Instance Type

- Cloud scheduler supports default settings