ComputeCanada Cloud External Relationship Development Meeting

Cloud Usage for Workloads in High Energy Physics

Utilizing Distributed Clouds for Compute and Storage

Marcus Ebert mebert@uvic.ca

on behalf of the <u>High Energy Physics Research Computing Group</u> Frank Berghaus, Kevin Casteels, Colson Driemel, Colin Leavett-Brown, Michael Paterson, Rolf Seuster, Randall Sobie, Ryan Taylor (University of Victoria) Fernando Fernandez Galindo, Reda Tafirout (TRIUMF)

What we do

- running compute workload for High Energy Physics experiments
 - ATLAS (CERN, Switzerland) and Belle-II (KEK, Japan) currently
 - large international collaborations with continuously demand for compute resources
- integrated into the Worldwide Grid Infrastructure
 - o for experiments we are a "normal" grid site

differences to a "normal" Grid site:

- we use VMs instead of bare meta I batch systems
- we run compute jobs not only locally in the same center where the data is
- dynamic VMs run in clouds at different locations

we need to handle:

- on-demand start/stop of VMs with correct resources
- image distribution
- uniform data handling

Traditional GRID site

Cloud computing for the GRID

Cloud computing for the GRID

Utilizing Distributed Clouds for Compute and Storage

Distributed Cloud Compute

https://indico.cern.ch/event/637013/contributions/2739289

Single cloud compute

University cloud

- relatively easy to handle
- just 1 set of user name, password, flavor names, and image

User

Multi-cloud compute

Multi-cloud compute at UVic

- developed program that takes care of VM start/termination: Cloudscheduler
- developed tool to distribute images across all clouds: Glint
- User does not need to know anything about clouds
- User only sees a batch system
 - HTCondor in our case
- developed Shoal to auto discover squids closest to the clouds
 we make heavy use of CERNVM and CVMFS
- all used and developed software is Open Source and available on github

Cloudscheduler

- knows the allowed accounts and access URL to all used clouds
 - o can use Openstack, OpenNebula, Amazon, Microsoft Azure, and Google Cloud
- can have defaults for flavor and image
 - one for all or for each cloud separate
 - can be overwritten by a job if needed
- queries batch system about idle jobs
 - are there idle jobs
 - what are the job requirements
- knows what resources are used and what resources can be used on all clouds
 - quota limits in cloudscheduler: configurable on the command line and config file
- when enough resources are available on a cloud then starts VMs that are needed by idle jobs
 - cloud-init to customize a VM
- when there are no idle jobs and VMs are idle too, shutdown unused VMs automatically
 - good on clouds where resources cost money
 - also needed to start new VMs with different flavors, depending on what a new job needs

Glint

٠

Glint V2	Account:	HEPRC		Manage 'HEP	'RC' repos	; A	Admin Tools					
Hidden Images	Glint Images	Image Filter:	Sea	arch by Image Na	ame	Uplo	ad Image	Submit C	hanges	Hide/S	Show Image:	s
GLINT IMAG	GES			ecdf-gridpp	Nectar	ccw-hep	Chameleon	cceasthep	Otter			
canarie-demo			0			v		0				
CentOS 6.6			0				2					
CentOS-6-x86	_64-GenericClo	ud-1711.qcow2	0				2					
CentOS-6-x86	_64-GenericClo	ud-20141129	0			•						
CentOS-7-x86	_64-GenericClo	ud-1711.qcow2	0				2	٥	۲			
centos6-bare			0									
cernvm-3.6.5			0				2		S			
cernvm3-micr	o-2.7-7.hdd		0	2								
cernvm3-micr	o-2.8-6.hdd		0	2		•		2				
cernvm3-micr	o-3.0-6.hdd		0	2								
cernvm4-micr	o-2018.06-2		0									
cernvm4-micr	o-2018.06-2.hdd	1	0				•					
cernvm4-micr	o-3.0-6.hdd		0				0					
fedora-image			0									
gridpp-wn-070	0617		0	2				٥				
monitor-backup												

- easy to use web interface where all supported clouds are visible
 - same tenants and accounts like in Cloudscheduler (Openstack only)
- possibility to upload an image to a cloud
 - e.g. from desktop through browser
- images that are on at least one cloud can easily be copied to all other clouds
 - in web interface just click a check box for that image on all clouds where it should be
- images can also be removed from clouds
 - just uncheck the box for that image on a cloud

Utilizing Distributed Clouds for Compute and Storage

Shoal

- <u>Squid cache</u> publishing and advertising tool
 - we need squid caches since all our VMs are running on CVMFS, and all use the same image no matter where they run
- consist of 3 parts
 - shoal server
 - shoal agent
 - shoal client
- **Shoal server :** lists all registered squids on the web and gives a list to the client, sorted by distance to the client using GeoIP DB
 - central machine, only one needed
 - we run it as a central service: <u>http://shoal.heprc.uvic.ca/</u>
- **Shoal agent:** will advertise a squid to Shoal server
 - needs to be installed on the squid that one want to be advertised
- **Shoal client:** will query the shoal server to get a list of close by squids
 - runs on VM that needs a squid for caching
 - changes CVMFS configuration on the VM to use the nearest squids
 - at startup of VM and then per cronjob at least twice a day

September 28th 2018

Utilizing Distributed Clouds for Compute and Storage

Multi-cloud compute at UVic

Multi-cloud compute at UVic

- run for several years successful with High Energy Physics workload
 - supporting the <u>Atlas</u> and <u>Belle-II</u> experiments within their Grid computing
 - usual workload:
 - transfer environment for the job to the worker node (VM)
 - get at least one input file from a centralized storage system
 - do some compute using the input file(s)
 - transfer all output to a centralized storage system
- currently using about 10 clouds
 - in Northern America and Europe
 - Australia in test mode
- about 5,000 cores used in parallel all the time
 - most cores located in the 2 Compute Canada clouds and at CERN
- distributed compute works very well for us

Data handling when the compute can be anywhere is a different story ...

Distributed Cloud Storage

https://indico.cern.ch/event/637013/contributions/2739286

Cloud computing for the GRID

Utilizing Distributed Clouds for Compute and Storage

Cloud computing for the GRID

Dynafed

• developed by CERN IT

- good working with developers at CERN
- through personal contact and through the dynafed users forum
 - dynafed-users-forum@cern.ch
 - https://groups.cern.ch/group/dynafed-users-forum/
- redirector for a dynamic data federation
 - for data transfers, client is redirected to a storage element with the data
- access through http(s)/dav(s) protocols
- can directly access S3 and Azure based storage in addition to existing Grid storage
 - no credentials visible to the client
 - preauthorized URL with limited lifetime is used to access files on the storage
- X.509 based authentication/access authorization can be used with dynafed
 - <u>http://heprc.blogspot.com</u> for grid-mapfile based authentication/authorization
 - different posts have also links to dynafed installation instructions in our TWiki

Some features using Dynafed

- redirecting client to nearest site that has data or is enabled for writing data
 - uses GeoIP DB
 - in the future other characteristics could be added, like latency, bandwidth, or storage cost
- client tools can get new redirect to another site if anything happens with an already established connection
 - site outage, network problems at a site,....
- root based tools can speak webday and access data over network using dynafed
 - TFile *f=TFile::Open("davs://dynafed.server:PORT/belle/path/to/file/file.root")
 - uses external davix libraries
- new sites can easily be added any time
 - o administration of connected sites happens in Dynafed, not at a site
- gfalFS: tool to mount the whole data federation into a Linux file system
 - fuse based, but stable and reasonable fast
 - o all VMs see same mount point and directory structure behind it, e.g. /mount/data/experiment/user/dir1/file1
 - but each VM can get the data from a different endpoint when replicas across all endpoints exist <u>http://heprc.blogspot.com/2017/12/mounting-federated-storage-cluster-as.html</u>

Utilizing Distributed Clouds for Compute and Storage

- running different installations
 - in production for Belle-II (through gfalFS and only for reading)
 - in testing for Atlas; expecting full production use in the next months
 - works very well, but for full production usage experiments need to change their frameworks
- behind Dynafed different kind of endpoints
 - existing Grid sites
 - own Ceph installation
 - minio based endpoints in VMs on different clouds
 - <u>https://www.minio.io/</u>
- multi-experiment enabled
 - same installation can be used for Atlas and Belle-II access
 - authentication and authorization controls who can access what
- want to demonstrate that this can work as a global distributed storage system
 - in the future needed when moving compute more and more to clouds and away from isolated sites
 - WLCG demonstrator project for future WLCG developments

- running different installations
 - in production for Belle-II (through gfalFS and only for reading)
 - in testing for Atlas; expecting full production use in the next months
 - works very well, but for full production usage experiments need to change their frameworks
- behind Dynafed different kind of endpoints
 - existing Grid sites
 - own Ceph installation
 - minio based endpoints in VMs on different clouds
 - <u>https://www.minio.io/</u>
- multi-experiment enabled
 - same installation can be used for Atlas and Belle-II access
 - authentication and authorization controls who can access what
- want to demonstrate that this can work as a global distributed storage system
 - in the future needed when moving compute more and more to clouds and away from isolated sites
 - WLCG demonstrator project for future WLCG developments

To demonstrate that such distributed storage system can scale to a global system that can be used efficient and fault resistant, we need to have as many different endpoints as possible.

- most data comes from existing grid storage sites
- currently only our own Ceph storage in Victoria, ~15TB
- very small minio installations on the different clouds
 - running in Openstack VMs with a volume added
 - good for testing
 - but not much space and performance for large scale tests
- looking to expand to use other CEPH installations
 - \circ at the order of 10s of TBs
 - not at a single location, but distributed across Canada
 - especially at the east coast would be good

- most data comes from existing grid storage sites
- currently only our own Ceph storage in Victoria, ~15TB
- very small minio installations on the different clouds
 - running in Openstack VMs with a volume added
 - good for testing
 - but not much space and performance for large scale tests
- looking to expand to use other CEPH installations
 - \circ at the order of 10s of TBs
 - not at a single location, but distributed across Canada
 - especially at the east coast would be good

Does CC operates Ceph storage and could provide buckets at different locations?

Distributed cloud-storage and cloud-compute for the GRID

Storage cloud not only useful for cloud jobs but also for compute-only sites and any group that needs distributed storage with unified namespace!

Summary

- developed compute system that can utilize and unify different clouds and cloud types into a single infrastructure
 - clouds hidden to the user
 - user interface is a normal batch system interface
 - HTCondor in our case
 - o run successfully since many years with High Energy Physics workload
 - currently developing a new, more modern version of cloudscheduler
 - with web interface, easier multi-project use, and integration of Glint
 - in test mode right now

• working on establishing a global distributed storage cloud based on dynafed

- single endpoint with fault resistant redirection to nearest storage via http(s)/dav(s)
- need more distributed resources for testing/development and establishing such storage cloud

<u>links:</u>

group page :	http://heprc.phys.uvic.ca	dynafed:	
http://lcgdm.web.ce	ern.ch/dynafed-dynamic-feder	ation-project	
group blog :	https://heprc.blogspot.com		
github repository:	https://github.com/hep-gc		
cloudscheduler:	https://github.com/hep-gc/clo	oud-scheduler (current prod	uction version)
	https://github.com/hep-gc/clo	oudscheduler (currently in c	levelopment)
Glint :	http://heprc.blogspot.com/20	017/08/glint-version-2-ente	ers-production.htm
shoal :	http://shoal.heprc.uvic.ca		
September 28th 2018	Utilizing Distr	ibuted Clouds for Compute an	d Storage

Advantages of using S3 based storage

• easy to manage

- no extra servers needed, no need for the whole Grid infrastructure on site (DPM, mysql, apache, gridftp, xrootd, VOMS information, grid-mapfile, accounting, ...)
- just use private/public access key in central Dynafed installation
- no need for extra manpower to manage a grid storage site
 - small group with budget to provide storage but no manpower for it: Just buy S3 based xTB for y years and put the information into dynafed ---> instantly available to the Grid, no need to buy/manage/update extra hardware
 - if university/lab has already large Ceph installation --> just ask for/create a bucket, and put credentials in dynafed

• industry standard

- adapted from Amazon by Open Source and commercial cloud and storage solutions
 - HPC, Openstack, Ceph, Google, Rackspace cloud storage, NetApp, IBM,...

• scalable

- traditional local file storage servers based on traditional filesystems will become harder to manage/use with growing capacity needs, same for other "bundle" solutions (DPM,...)
- raid5 dead, raid6 basically dead too, ZFS will get problems with network performance