
 

Quasi-online accounting 
and 

monitoring system for distributed clouds

R. Seuster and R. Sobie
 

F.Berghaus, K.Casteels, C.Driemel
M. Ebert, C.Leavett-Brown, M.Paterson

University of Victoria

CHEP 2018, Sofia



09-15.10.2016 Quasi-online accounting & monitoring 2

 

Introduction
● We run HEP workload for ATLAS + Belle II on

distributed clouds: 
– 15 clouds, general/HEP research and commercial  (Azure, Amazon,

Google) in North America & Europe

–

● We are motivated by two key elements:

(1) As we use clouds of other HEP sites, they require
accurate and timely accounting information

(2) We use our framework and hardware to provide
ATLAS and Belle II job monitoring



09-15.10.2016 Quasi-online accounting & monitoring 3

 

Intermezzo: CloudScheduler
How do we run distributed clouds ?

● We run 3 instances of cloudscheduler (CS):
– 2 for ATLAS (Canada and at CERN) and  1 for Belle II (Canada)

● CS  checks queue for idle jobs and boots VMs 
– contextualization of VM registers

VMs in condor on CS server

– jobs will then start on new VMs

– CS will retire VMs if no workload left

http://cloudscheduler.org



09-15.10.2016 Quasi-online accounting & monitoring 4

 

Accounting Framework

● ElasticSearch(ES)/Kibana instance at CERN
+ pycurl(*) on VMs to upload data

– one document in ES per VM per month

● “Fast-HS” benchmark run at VM boot time

● once an hour all VMs upload benchmark 
and “uptime, CPU and user times” to ES

– plots and tables automatically updated

– several displays: last hour, last day, last week, last month

– upload updates existing documents in ES  (new document in
ES for each VM at beginning of month(**))

_________________
(*)  no additional install on VMs required: pycurl uploads in-memory json documents to ES
(**) month is part of the name of document in ES



09-15.10.2016 Quasi-online accounting & monitoring 5

 

Time Range

efficiencies in different time windows and accounting table (partially)

# of booted VMs and provided CPU time in different time windows

‘type’ of VM: ATLAS or Belle II, steered
from CERN, ... Benchmarking results



09-15.10.2016 Quasi-online accounting & monitoring 6

 

Enhancing Stability
of Accounting Information

● We rely on stability of ES instance at CERN

● VMs repeatedly update existing documents in ES
– failed uploads from VMs to ES will be corrected by next successful

upload of accounting information (1h later)

– most interest in monthly breakdown → at beginning of month, all
running VMs create new documents in ES
● monthly accumulation in plots and tables almost trivial
● document name based on name and boot time of VM and have

current month appended

  → also allows for simple retrieval from scripts

● To ensure accuracy of accounting information, we
performed extensive cross checks



09-15.10.2016 Quasi-online accounting & monitoring 7

 

Re-using Frameworks:
Job Monitoring

● ElasticSearch/Kibana at UVic used to additionally
monitor Paylod Job Successes/Failures Monitoring

– needed to identify quickly faulty clouds, e.g. in case of connection
problems for up-/download of data

● Scripts for accumulation of information runs on
dedicated VMs, collects information from queueing
system (HTCondor), experiments job database
(Panda/DIRAC) and on VMs (in case of Belle II)

● different approaches needed for ATLAS / Belle II



09-15.10.2016 Quasi-online accounting & monitoring 8

 

Job Monitoring for ATLAS

● Panda DB main source of information, inquired once
an hour for all jobs that finished in our two queues

– this results in fine grained request to Panda via curl
→ very small load on DB

● HTCondor job ID part of returned information
– Combined with info from condor and cloudscheduler

→ we know on the cloud where the job ran
→ cloud dependent job monitoring

– wealth of other information available
→ detailed monitoring possible



09-15.10.2016 Quasi-online accounting & monitoring 9

 

type of job, input+output data:
highly correlated !

single-core jobs

“Test2” here means second (and final) attempt in Kibana to create this page

cloud where job ran

more detailed error messages 
                                        (very little failures)

memory usage of job

job status

runtime of job in seconds

disk usage of job

multi-core jobs



09-15.10.2016 Quasi-online accounting & monitoring 10

 

Job Monitoring for Belle II

● Belle II’s DIRAC-DB does not allow for easy data
mining like ATLAS’ Panda DB
→ small script on all worker nodes collects every 15 mins all DIRAC
job IDs and reports them back into ES with state “running”

● “Collector scripts” asks ES for all jobs “running” and
last update older than 1h (either because job stopped or missed
4 times in a row to update in ES, unlikely)

● for all those job IDs ask DIRAC DB via CLI interface
for update, and store updated information in ES

– failed jobs at our site can be resubmitted to other site
and would continue to be monitored



09-15.10.2016 Quasi-online accounting & monitoring 11

 

cloud

job status approx. job runtime

jobs that ran on our site finished at these sites

duplicate of  job status

helper plot for applying of filters by clicking

# of jobs on all sites in Belle II # of jobs on all sites in Belle II



09-15.10.2016 Quasi-online accounting & monitoring 12

 

How to transfer Secrets onto VMs
● VMs used can be on a public cloud with public

IP addresses. 

Need to transfer GSI keys, ES username/passwords securely onto VMs

● Also, How can we ensure that
– our pool of VM only contain ‘our’ VMs

– our VMs run only our workload → HTCondor and GSI

● Secrets could be certificates (GSI) used for condor
communication between services, ssh keys, passwords
for other services (e.g. ElasticSearch) 

● once GSI/SSL authentication for condor established can
use that – but how to establish that securely ?

– Openstack API not encrypted



09-15.10.2016 Quasi-online accounting & monitoring 13

 

How to transfer Secrets onto VM II

FIXME: Future Improvements: handle properly concurrent requests, implement apache module 

CloudScheduler Server

new VM 
on cloud

pycurl request for data file to 
  (*)

2. CS answers 
-CS encrypts random 
 blob with RSA-pubkey 
-tars encrypted random blob 
 and encrypted payload 
-CS answers with tar file 
-CS won’t repond to same request again 
-CS also won’t answer after certain time to requests for this VM

0. Preparation on CS: 
-CS boots new VM, generates random blob 
 and encrypts payload with random blob 
-shared secret, e.g. requestID for booting  
 new VM will be used for further encryption 
  →  requires small code changes to CS

1. Preparation on new VM: 
-VM boots and generates 
 RSA pub and priv keys for 
 secure communication with CS 
-VM requests secret from CS  
 with pubkey part of http-request

CS answers with 
encrypted tar file

(*)  pubkey here is in fact gzipped + base64 encoded ssh public key

Note: ssh pub key also contains hostname of VM, which could be used as additional cross check.



09-15.10.2016 Quasi-online accounting & monitoring 14

 

Summary and Conclusion

● Accounting information stored in ElasticSearch and
vizualized in Kibana as plots and tables

–  system very reliable with accurate numbers

● Job Success/Failure monitoring also in ElasticSearch
and Kibana 
→ almost online monitoring of job successes/failures

● Transfer of Secrets into VMs with industry standard
tool: openssl, ssh keys results in ssh-like encryption



09-15.10.2016 Quasi-online accounting & monitoring 15

 

Backup



09-15.10.2016 Quasi-online accounting & monitoring 16

 

Encryption with ssh keys

● similar to ssh connections, ssh keys can be used to
encrypt data, see e.g. https://bjornjohansen.no/encrypt-file-using-ssh-key

– generate random bits R

– encrypt payload P with random bits R to get P’

– encrypt random bits R with public key to get R’

– tar R’ and P’ and store on web server where VMs will
download ‘their’ tar file
● CS runs slightly modified python simplehttpserver (*)

for comunication between CS and VMs
– untar and decrypt with private key on VM

_________
(*) https://docs.python.org/2/library/simplehttpserver.html

https://bjornjohansen.no/encrypt-file-using-ssh-key

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

