A Cloud-based Grid Computing Site

Jonathan Woithe ¹ Martin Sevior ² Paul Jackson ¹ David Dossett ²
Marcus Ebert ³

¹University of Adelaide, Australia ²University of Melbourne, Australia ³University of Victoria, Canada

eResearch 2025, Brisbane, Australia October 2025

Outline Grid Computing Overview

Motivation

Intrastructure Description Servers For Storage And Compute

Storage Compute

Current Status Benchmarks

Challenges

Future plans

Grid Computing Overview

- Grid Computing: provide Compute Elements (CE) and Storage Elements (SE) for High Energy Physics experiments
 Resources distributed across the globe. For the ATLAS experiment:
 - Storage: Disk: 400 PB disk, 600 PB tape
 - CPU hours: 300 million per month
 - Average data transfer throughput: 50 GB/s
 - ► AU-Melbourne Grid site: CE and SE for two projects, ATLAS and Belle II

Motivation

- Grid sites traditionally use bare metal and specialised filesystems
 Institutional research computing infrastructure is increasingly cloud-based
- → Need to use what is readily available
 - ▶ Want to use industry standard interfaces
 → Avoid esoteric filesystems which require domain-specific knowledge
 - Avoid esoteric mesystems which require domain-specific knowledge
- ► Exploit economies of scale from cloud resource providers for Grid computing

 Easily increase compute and storage as funding allows and demand grows
 - 22

Servers For Storage And Compute

- ► VMs provided by Melbourne Research Cloud (MRC)

 ► Orchestration by OpenStack
- ► Server configuration managed by Ansible, tracked in git
- ► All VMs run AlmaLinux 9

750 TB of S3 compatible object store

Not a traditional filesystem

- Each "file" is an object in a database
- The object's "key" is interpreted as its filesystem path
- No explicit objects for filesystem directories

Intrastructure Description Storage Volume

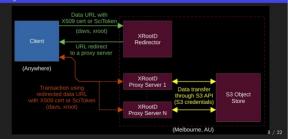
► Belle II and ATLAS have separate key namespaces

Use a single bucket for flexibility

- Gives illusion of separate top-level directories
 XRootD serves data from S3 though days, https, root
- (https://xrootd.org/)
- ► Enabled by the XRootD-s3 work at SLAC (https://cds.cern.ch/record/2857626/files/ATL-SOFT-SLIDE-2023-125.pdf)

Intrastructure Description Storage: XRootD

XRootD redirector VM (2-core, 8 GB RAM)

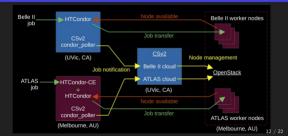

- Redirects request to a proxy server
- ➤ XRootD proxy server VM (8-core, 32 GB RAM)

Authenticates incoming request

Authenticates access request, serves requested resource

► Currently have 2 proxy servers. Add more to increase throughput as needed.

Storage: XRootD



- Storage Resource Reporting (SRR) JSON file
- Defines Belle II and ATLAS storage shares, space usage and capacities Generated hourly by bash script using s3cmd on an XRootD proxy server
 - Adler32 checksums (managed on an XRootD proxy server)
 - Evaluated on first request by python script using boto3 library for S3 access Checksum stored as metadata attribute on S3 object for later reference

- ► Third Party Copy
 - Data copy between two SEs initiated by a third party
 - Processed by XRrootD proxy servers
 - davs:// transfers: handled by internally by XRootD
 - root:// transfers: use pipelined xrdcp and s3cmd processes

Intrastructure Description Compute

- ► Slightly different architectures used for Belle II and ATLAS
- ► Cloud resources managed by Cloud Scheduler v2 (CSv2) instance at UVic (https://csv2.heprc.uvic.ca)

Compute: Belle II

HTCondor controller host VM at IIVic

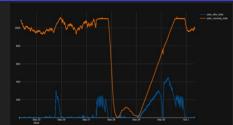
- Jobs submitted to HTCondor by local DIRAC site-director
- (No need for authentication by HTCondor-CE)
- CSv2 monitors HTCondor, starts/stops worker VMs to match demand
- HTCcondor runs job on selected worker VM (8-core, 32 GB RAM)
- Worker VM setup by CSv2 via cloud-init, notifies HTCondor when ready

- ► A MRC VM runs HTCondor and HTCondor-CE (8-core, 32 GB)
 - Token authentication is used
- ▶ Jobs submitted by PanDA to HTCondor-CE on the HTCondor host
- After authorisation, jobs are sent to HTCondor by HTCondor-CE
- ► CSv2 processes proceed as for Belle II

Current Status

- Belle II storage is operational (400 TB, 19 TB used as of 8 Oct 2025)
- Belle II compute is operational (900 vCPUs)

Current status



(from https://people.na.infn.it/~spardi/tpc-davs-latest.html)

Current status

Belle II - Compute jobs, running and idle

Current Status ATLAS

- ► ATLAS storage is operational (350 TB, 271 TB used as of 8 Oct 2025)
- ATLAS compute is operational (432 vCPUs)
 Looking to add additional vCPUs to ATLAS pool

3 / 22

Benchmarks davs://

s3 read

s3 write

root:// read

root:// write

davs:// read	108 MB/s
davs:// write	123 MB/s
Checksum calc	3.2 s
Checksum fetch	0.72 s

Within cloud

213 MB/s

165 MB/s

6.6 MB/s

132 MB/s

Results are the average of 5 tests, each using a 1 GB test file

In Australia

40 MB/s

74 MB/s

34 9

0.98 s

n/a

n/a

5.9 MB/s

70 MB/s Read/write tests used gfal-copy, checksum tests used gfal-sum, s3 tests were run on an XRootD proxy server

Challenges

- Invisible application firewalls
 - Slow root:// read
 - ► Read/write speed variability, particularly outside Australia
 - Shift to AlmaLinux 9 environment

Future plans

- Increase storage and compute resources as funding allows
- Tentatively planning for an additional 1 PB, mostly directed towards ATLAS
 - Add 1000 vCPUs to ATLAS pool
- Monitor transfers for Belle-II and ATLAS, add extra proxy servers as needed

Conclusions

- We have built a grid site using cloud storage and compute in the MRC
 The "AU-Melbourne" Grid site is in production
 - CE and SE resources are provided for ATLAS and Belle-II
 - It is possibly the first production Grid site with cloud-based CE and SE